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NEWTONIAN MOTION AS ORIGIN
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The origins of recently reported anisotropy of the local velocity field of nearby galaxies (velocities
less than 500 km/s corresponding to the distance less than 8 Mpc) are studied. The exact solution of
the Newtonian equation for the expanding Universe is obtained. This solution allows us to separate
the Newtonian motion of nearby galaxies from the Hubble flow by the transition to the conformal
coordinates. The relation between the Hubble flow and the Newtonian motion is established. We show
that the anisotropic local velocity field of nearby galaxies can be formed by such a Newtonian motion
in the expanding Universe, if at the moment of the capture of galaxies by the central gravitational field
their conformal energy is equal to zero.

W3yu ercss mpuvuH HEA BHO OTKPHITOM HHU3OTPOIMHU JIOK JIBHOTO MO CKOPOCTEH MECTHBIX T -
J KTUK (cKopoct MeHee 500 KM/c, 4TO COOTBETCTBYeT p ccTosiHUI0 MeHee 8 Mmk). H iineno tounoe
pelieHre HPIOTOHOBCKHMX Yp BHEHHil ¢ y4eToM p ciuupenus Bcemennoii. T Koe pellieHHe MO3BOJISET
OTJIEJIUTh HBIOTOHOBCKOE JIBMIKEHHE MECTHBIX T J KTHK OT X OOJIOBCKOrO TOTOK C IOMOINBI Iepe-
X0l K KOH(OPMHBIM KOOPAUH T M. TeM ¢ MbIM, YCT H BIIHB €TCS COOTHOIIEHHE MeXIy HbIOTOHOBCKUM
JIBHKEHHEM U JIOK JIbHBIM TOJIeM CKOpPOCTe I' J KTUK. [IoK 3 HO, YTO HM30TPOIHS JIOK JIBHOTO MOJIS
CKOpOCTe#l MECTHBIX T J1 KTHK MOXET OBbITh MONy4eH OJ rog psi T KOMY HBIOTOHOBCKOMY JIBHXXEHHIO B
p cumpsoneiicss BceneHHOH, eciii B MOMEHT 3 XB T T JI KTHK IEHTpP JIbHBIM TP BHUT IIMOHHBIM TOJIEM
UX KOH(OPMH $1 DHEPIUs P BH HYJIO.

INTRODUCTION

Recent observation of the local velocity field of galaxies gives a three-dimensional ellipsoid
with different values of the Hubble parameter, clearly showing its anisotropic character [3,4].

In this paper, we present a possible point of view that this local velocity field of galaxies
can be explained by their Newtonian motions.

The analysis of the observational data will be based on the radial velocities of nearby
galaxies, belonging to the Local Group. Our paper is organized in the following manner. In
Sec. 1, the cosmic evolution is described. In Sec. 2, we introduce the Newtonian motion and
separate this motion from the cosmic one. In Sec. 3, the initial data of the galaxies capture by
a central gravitational field is considered. In Sec. 4, the simplest example is given to elucidate
our results. The paper ends with the conclusion.
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1. COSMIC EVOLUTION OF A FREE PARTICLE

Effects of cosmic evolutions are considered in the Friedmann—Lemaitre—Robertson—-Walker
(FLRW) metrics

(ds?) = (dt)* — a(t)*(dz")”. M

The formulation of the Newtonian problem in this metrics proposes a choice of physical
variables and coordinates. The modern cosmology uses two choices of such variables: the
conformal time (1) and coordinate distance (x%) with the interval in terms of which the
interval (1) takes the form

(ds®) = a(n)*[(dn)* — (dz*)?], )

and the Friedmann time (¢) and distance X’ = ax® in terms of which the interval (1) takes
the form

(ds®) = (dt)? — [dX* — H(t) X dt]?, (3)

where H(t) = a(t)/a(t) is the Hubble parameter, we have used here the formula of differential
calculus: adz = d(ax) — zda. Both the sets are mathematically equivalent'.

In terms of the Friedmann variables X* = az’ the Newton action in the space with the
interval (3) takes the form

to
iy , pP?
Sa = /dt [H(Xz -HX'") - —/—|. 4)
2m0
tr
The equations of motion
X'—-HX'=—, P'4+HP'=0 (5)
mo

have the simplest solution X* = ax}, where z{ is a constant.
The Hubble flow (or the Hubble velocity field) can be defined by

How = 1 @:Mﬁ+ﬁ+ﬁ) ©

The transition to the conformal variables (2) #* = X'/a, p; = aP; gives the action®
no .
dx’ 2
Sa= /d {Pi— i ——— ] )
" dn  2moa(n)
nr

for a particle with the running mass moa(n) (with the present-day value a(ng) = ag = 1).

INote that a(t) = a(n(t)) is connected with a(n) by equation dt = a(n)dn.
2 Actions (4) and (6) differ from the action (7.4) in monograph [1], that is not compatible with quantum field
theory in the conformed flat metric (2) [2].
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2. NEWTONIAN MOTION IN AN EXPANDING UNIVERSE

Let us consider the action

to
_ PzXz_HX’L _ 4 =1,
S, /dt[ ( -t S @®)

tr

where a = MomoG is a constant of a Newtonian interaction of a galaxy with a mass my in
a gravitational field of a central mass Mo. Action (8) for radial momentum Pg and orbital
moment P in the cylindrical coordinates

X'=Rcosh, X* =Rsinf, X3=0 9)

takes the form

to

SA:/dt {PR(R—HR)JFPQ(?——R—

P2 P92 «@
10
2m0 2m0R2 + R:| ( )

tr

To separate the Newtonian motion from the Hubble velocity field (6), we use the conformal
variables p, = Pra(t), r = R/a(t), dn = dt/a(t). In terms of these variables the action
takes the form

(1)

70 9 P2
Sa= [dyl|pa’ +Po — L J @
A / n [p,«r + 5 2moa(n)  2moa(n)r? + r
ni

Substituting R(n) = a(n)r(n) in the definition of the total Hubble flow Hi. (6) we get this
Hubble flow in the following form

Ldlt_ldo 100 i am (12)

Hypt = — — = =
YU Rdt adt | rdt

One can see that the total Hubble flow differs from the classical one H = a/a by the value

Y

Cordt 13

This transition (12) is just the main idea of our paper to carry out the separation of the
Hubble velocity field (13) from possible Newtonian motion.

3. THE CAPTURE OF GALAXIES BY CENTRAL FIELD

The energy of a particle with the running mass m(n) = a(t)mo described by the action

(1)

2 2
Dy P9 o
E(n) = _e 14
() 2moa(n) + 2moa(n)r? r 14
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is not conserved in the contrast to the energy of particle with a constant mass in the Newtonian
mechanics [5]. In our case (14), if the scale factor a(n) increases, the energy (14) runs from
its positive values to negatives ones. There is a moment of a time 77 = 1y when the energy
(14) is equal to zero:

E(m) _ ()*+vi
= —w? =0, 15
mOa(nI) 9 I ( )

where r; = p,.(nr)/myr; is radial initial velocity; m; = moa(nr), r1 = r(nr) are the initial
conformal mass and coordinate distance, and

Pg (%
vy = ;o wr = (16)
mrry miry

are the orbital velocity and Newtonian one, respectively. It is known that the change of a sign
of the energy means the change of an unrestricted motion of a particle by a finite motion in
the central field. Therefore, the time 7; can be treated as the time of the capture of a particle
(cosmic object) by the central gravitational field.

If the initial radial velocity is also equal to zero 7 = 0, the zero energy constraint (15)

v7 = 2uw? (17)

becomes the equation for the initial data moa(n;)r(nr) = mrrr. The solution of this equation
myrr = P#/(2a) can give an orbital velocity

2
v = FO; = const (18)

of the captured cosmic objects. The fact of the universality of the orbital velocity (18)
for all ellipsoidal trajectories (due to the zero energy initial data of the formation of a
local Universe) gives us a possibility of explaining both the numerous observational data
on the law of the constant orbital velocity [4-7] and the anisotropy of the local velocity
field [3,4].

The anisotropy of the local velocity field AH =0 [1,
of the isotropic circular trajectories () = ro, ' =1 =

P,
vg = wo (Uo_ O wy = | > (19)
moTo moTo

2] is not compatible with the class
0 with the equation of motion

known as the «virial theorem» [7-9] where the initial radius r; can be identified with the
observational radius'. If trajectories belong to a class of ellipsoidal ones, the initial radius r;
does not coincide with the observational radius.

IRemind that the hypothesis of the Cold Dark Matter was proposed in [7,8] to explain the law of the constant
orbital velocity in the class of the circular trajectories in a nonexpanding Universe, where (19) is valid.
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4. THE EXACT SOLUTION

Let us consider a solution of the Kepler problem, i.e., a motion of an object in the central
field in the expanding Universe for the rigid state when the densities of energy and pressure
are equal. The cosmic scale factor a can be written as [10]

a(n)? = [L+2Ho(n —m)], (20)

which describes the recent Supernova data [11-13] in the relative units [10]. Equation (20)
can be considered as a change of the evolution parameter n — a(n). In terms of the new
variables

Y= 7’/7”07 Dy = Pr/mo, Vo = Pe/romo7

where r(ng) = ro is the present-day data, action (11) takes the form

1
po+v5/y° aw%] }
)

d a1
Sa :romo/da {pyd—z +vo— — —

5 ” 21

da c¢g

ar

where wg = y/a/morg, co = Horo are the Newtonian velocity and the Hubble one, respec-
tively, and a; = 1/(1 + z;) is determined with the redshift z; at the moment of formation
n = nr. The total energy of the system (14) in terms of the new variable takes the form

Efa) _ 1

> ” (22)

2 2 2
Py +v5/y? awd
Tomo o '

It is easy to see that vy is a constant of the motion dvg/da = 0. The equations of the
radial motion

dy dp, v& —aw?
_ Y% _ 2wy 23
Py =900 4 Y y2 23)

can be written in the Lagrangian form

@y (wo\* () L _a 4
da?  \ co wo ) y3  y?|’

At the present-day time a = ag = 1, yg = 1 this equation determines the second derivative

ERCIOR

in terms of three velocities wg, vo, co, and it allows us to choose any relations between wg

and o, in particular v = 2w3, in contrast to the circular trajectory, where v3 = wg.

The general solution of this equation (24) can be obtained in the parametrical form:

NQ(’T)

= 0172/37]\7(7)7 y(r) = C2T2/3N(7')a (26)

a(r)
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where 7 is the parameter of solution with the initial date ro = r(7), and

N(7) = oqU(7) + B1U(T)V (1) + mV?(7), @7
2

No(1) = (TCUZ;T) - %N(T)) +47°N?(7) + w?A, (28)
A= 404171 - ﬁ%7 (29)

- Vo 3(30 1/3 1
a= (w_o) (M) 2WAL/Z (30)

o Vo 411)0 1/3 1
o= (w)G) = oy

Three constants «q, 1, y1 = const can be found from the following system of three equations:

1 rr dy
1+ 27 ) y|7:o To + z1, da o ) ( )

al,g = al,_,, =ar

n=n

here for the upper sign (restricted solution at infinity, 7 = 400) in (28)

2
U(r) = Jys(t), V(r)=Yis(r), and w=—, (33)

™

where J;/3(7) and Y;,3(7) are the Bessel functions of the first and second (or Niemann
function) kind, while for the lower sign (unrestricted solution at infinity, 7 = +00) in (28)

U(T) = 11/3(7-)5 V(T) = KI/B(T)7 and w = _17 (34)

where I /3(7) and K /3(7) are the modified Bessel functions of the first and second (or
MacDonald function) kind (see, e. g., [14]).

a(t)y(t) sin (0)

a(m)y(r)

0 5 10 15 20 2 3
a(r) a(r)y(r) cos (0)
Fig. 1. Graph of function y(r) = Fig. 2. Graph of functions product a(7)y(7)
a(t)r(t)/ro (26) at v3/cZ = 0.2 and (26) at v3/c3 = 0.2 and wg /c§ = 0.1 for —3 <

wg/cg = 0.1 a(t) < 14



70 Biernacka M. et al.

_ AH sin (0)
1.0 ] 0.06
0.8 0.04
0.6 0.02
] 0
0.4
] -0.02
0.2
E —-0.04
0 ‘ -0.06
Fig. 3. Graph of function AH (13) in units Hy Fig. 4. Graph of function AH (13) in units
at v3/cg = 0.2 and w3 /ci = 0.1 Ho at v3/c3 = 0.2 and wi/ci = 0.1 for

0.8 <a(r)< 14

A solution of the equation of motion following from the action (11) is given in Figs. 1
and 2. We use this solution for construction of two plots.

Figure 3 gives the values of the correction (13) to the Friedmann Hubble flow resulting
from taking into account Eq. (13). It is clearly seen that the corrections are dumped with time
and have a quasi-periodical character.

In Fig. 4 the angular distribution of the Hubble flow correction, as given by (13), is pre-
sented. The correction is anisotropic. We consider the 2-dimensional case while Karachent-
sev’s anisotropy is observed in 3-dimensions. Nevertheless, our 2-dimensional analysis allows
one to see the anisotropy of the Hubble flow and to estimate the order of the magnitude of
the anisotropy.

We have considered the case when the formation of a galaxy began from the zero energy
state (the initial data Ey = 0, and velocity y, = 0). These data correspond to the relation
g = 2wd.

CONCLUSION

Our paper was motivated by the finding that in the local Universe the velocity field is
anisotropic [3,4]. This effect is difficult for explanation. The only possible suggestion, but
rejected by Karachentsev, was rotation [4]. We are trying to find the origin of this anisotropy.
In ordered to do this, we consider the general uniform expansion of the Universe. Since this is
the nearby (less than 8 Mpc) part of the Universe around us, we use the Newtonian approach.
We studied the motion of the test massive particle in the central gravitational field on the
background of cosmic evolution of the type of FLRW space-time with uniform expansion.
We assume the rigid state of the matter when densities of energy and pressure are equal and
which corresponds to conformal cosmology [10] compatibles with Supernova data [11]. We
obtained the exact solution of the above-mentioned Kepler problem, to find the difference
between the uniform Hubble flow and our case. We have shown that this difference was
anisotropic. In such a way we explained the anisotropy of the local velocity field by the
Newtonian motion of galaxies in the central field. Of course, our 2-D consideration shows a
possible mechanism of the observed 3-D anisotropy.
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Having the solution of the Kepler problem we admit the rotation of galaxies around the
centre of the local Universe. This local Universe must be regarded as the Local Group of
galaxies. In such a way, we support the picture in which galaxies rotate around the centre of
the Local Group in the class of ellipsoidal trajectories.
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