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NEWTONIAN MOTION AS ORIGIN
OF ANISOTROPY OF THE LOCAL
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The origins of recently reported anisotropy of the local velocity ˇeld of nearby galaxies (velocities
less than 500 km/s corresponding to the distance less than 8 Mpc) are studied. The exact solution of
the Newtonian equation for the expanding Universe is obtained. This solution allows us to separate
the Newtonian motion of nearby galaxies from the Hubble Aow by the transition to the conformal
coordinates. The relation between the Hubble Aow and the Newtonian motion is established. We show
that the anisotropic local velocity ˇeld of nearby galaxies can be formed by such a Newtonian motion
in the expanding Universe, if at the moment of the capture of galaxies by the central gravitational ˇeld
their conformal energy is equal to zero.

ˆ§ÊÎ ¥É¸Ö ¶·¨Î¨´  ´¥¤ ¢´µ µÉ±·ÒÉµ°  ´¨§µÉ·µ¶¨¨ ²µ± ²Ó´µ£µ ¶µ²Ö ¸±µ·µ¸É¥° ³¥¸É´ÒÌ £ -
² ±É¨± (¸±µ·µ¸É¨ ³¥´¥¥ 500 ±³/¸, ÎÉµ ¸µµÉ¢¥É¸É¢Ê¥É · ¸¸ÉµÖ´¨Õ ³¥´¥¥ 8 Œ¶±). Y °¤¥´µ ÉµÎ´µ¥
·¥Ï¥´¨¥ ´ÓÕÉµ´µ¢¸±¨Ì Ê· ¢´¥´¨° ¸ ÊÎ¥Éµ³ · ¸Ï¨·¥´¨Ö ‚¸¥²¥´´µ°. ’ ±µ¥ ·¥Ï¥´¨¥ ¶µ§¢µ²Ö¥É
µÉ¤¥²¨ÉÓ ´ÓÕÉµ´µ¢¸±µ¥ ¤¢¨¦¥´¨¥ ³¥¸É´ÒÌ £ ² ±É¨± µÉ Ì ¡¡²µ¢¸±µ£µ ¶µÉµ±  ¸ ¶µ³µÐÓÕ ¶¥·¥-
Ìµ¤  ± ±µ´Ëµ·³´Ò³ ±µµ·¤¨´ É ³. ’¥³ ¸ ³Ò³, Ê¸É ´ ¢²¨¢ ¥É¸Ö ¸µµÉ´µÏ¥´¨¥ ³¥¦¤Ê ´ÓÕÉµ´µ¢¸±¨³
¤¢¨¦¥´¨¥³ ¨ ²µ± ²Ó´Ò³ ¶µ²¥³ ¸±µ·µ¸É¥° £ ² ±É¨±. �µ± § ´µ, ÎÉµ  ´¨§µÉ·µ¶¨Ö ²µ± ²Ó´µ£µ ¶µ²Ö
¸±µ·µ¸É¥° ³¥¸É´ÒÌ £ ² ±É¨± ³µ¦¥É ¡ÒÉÓ ¶µ²ÊÎ¥´  ¡² £µ¤ ·Ö É ±µ³Ê ´ÓÕÉµ´µ¢¸±µ³Ê ¤¢¨¦¥´¨Õ ¢
· ¸Ï¨·ÖÕÐ¥°¸Ö ‚¸¥²¥´´µ°, ¥¸²¨ ¢ ³µ³¥´É § Ì¢ É  £ ² ±É¨± Í¥´É· ²Ó´Ò³ £· ¢¨É Í¨µ´´Ò³ ¶µ²¥³
¨Ì ±µ´Ëµ·³´ Ö Ô´¥·£¨Ö · ¢´  ´Ê²Õ.

INTRODUCTION

Recent observation of the local velocity ˇeld of galaxies gives a three-dimensional ellipsoid
with different values of the Hubble parameter, clearly showing its anisotropic character [3,4].

In this paper, we present a possible point of view that this local velocity ˇeld of galaxies
can be explained by their Newtonian motions.

The analysis of the observational data will be based on the radial velocities of nearby
galaxies, belonging to the Local Group. Our paper is organized in the following manner. In
Sec. 1, the cosmic evolution is described. In Sec. 2, we introduce the Newtonian motion and
separate this motion from the cosmic one. In Sec. 3, the initial data of the galaxies capture by
a central gravitational ˇeld is considered. In Sec. 4, the simplest example is given to elucidate
our results. The paper ends with the conclusion.
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1. COSMIC EVOLUTION OF A FREE PARTICLE

Effects of cosmic evolutions are considered in the FriedmannÄLemåaitreÄRobertsonÄWalker
(FLRW) metrics

(ds2) = (dt)2 − a(t)2(dxi)2. (1)

The formulation of the Newtonian problem in this metrics proposes a choice of physical
variables and coordinates. The modern cosmology uses two choices of such variables: the
conformal time (η) and coordinate distance (xi) with the interval in terms of which the
interval (1) takes the form

(ds2) = a(η)2[(dη)2 − (dxi)2], (2)

and the Friedmann time (t) and distance X i = axi in terms of which the interval (1) takes
the form

(ds2) = (dt)2 − [dX i −H(t)X idt]2, (3)

whereH(t) = ȧ(t)/a(t) is the Hubble parameter, we have used here the formula of differential
calculus: adx = d(ax) − xda. Both the sets are mathematically equivalent1.

In terms of the Friedmann variables X i = axi the Newton action in the space with the
interval (3) takes the form

SA =

t0∫
tI

dt

[
Pi(Ẋ i −HX i) − P 2

i

2m0

]
. (4)

The equations of motion

Ẋ i −HX i =
Pi

m0
, Ṗ i +HP i = 0 (5)

have the simplest solution X i = axi
0, where x

i
0 is a constant.

The Hubble Aow (or the Hubble velocity ˇeld) can be deˇned by

Htot =
Ṙ

R

(
R =

√
X2

1 +X2
2 +X2

3

)
. (6)

The transition to the conformal variables (2) xi = X i/a, pi = aPi gives the action2

SA =

η0∫
ηI

dη

[
pi
dxi

dη
− p2

i

2m0a(η)

]
(7)

for a particle with the running mass m0a(η) (with the present-day value a(η0) = a0 = 1).

1Note that a(t) = a(η(t)) is connected with a(η) by equation dt = a(η)dη.
2Actions (4) and (6) differ from the action (7.4) in monograph [1], that is not compatible with quantum ˇeld

theory in the conformed Aat metric (2) [2].
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2. NEWTONIAN MOTION IN AN EXPANDING UNIVERSE

Let us consider the action

SA =

t0∫
tI

dt

[
Pi(Ẋ i −HX i) − P 2

i

2m0
+

α

R

]
, (8)

where α = MOm0G is a constant of a Newtonian interaction of a galaxy with a mass m0 in
a gravitational ˇeld of a central mass MO. Action (8) for radial momentum PR and orbital
moment Pθ in the cylindrical coordinates

X1 = R cos θ, X2 = R sin θ, X3 = 0 (9)

takes the form

SA =

t0∫
tI

dt

[
PR(Ṙ −HR) + Pθ θ̇ −

P 2
R

2m0
− P 2

θ

2m0R2
+

α

R

]
. (10)

To separate the Newtonian motion from the Hubble velocity ˇeld (6), we use the conformal
variables pr = PRa(t), r = R/a(t), dη = dt/a(t). In terms of these variables the action
takes the form

SA =

η0∫
ηI

dη

[
prr

′ + Pθθ
′ − p2

r

2m0a(η)
− P 2

θ

2m0a(η)r2
+
α

r

]
. (11)

Substituting R(η) = a(η)r(η) in the deˇnition of the total Hubble Aow Htot (6) we get this
Hubble Aow in the following form

Htot =
1
R

dR

dt
=

1
a

da

dt
+

1
r

dr

dt
= H + ∆H. (12)

One can see that the total Hubble Aow differs from the classical one H = ȧ/a by the value

∆H =
1
r

dr

dt
. (13)

This transition (12) is just the main idea of our paper to carry out the separation of the
Hubble velocity ˇeld (13) from possible Newtonian motion.

3. THE CAPTURE OF GALAXIES BY CENTRAL FIELD

The energy of a particle with the running mass m(η) = a(t)m0 described by the action
(11)

E(η) =
p2

r

2m0a(η)
+

P 2
θ

2m0a(η)r2
− α

r
(14)
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is not conserved in the contrast to the energy of particle with a constant mass in the Newtonian
mechanics [5]. In our case (14), if the scale factor a(η) increases, the energy (14) runs from
its positive values to negatives ones. There is a moment of a time η = ηI when the energy
(14) is equal to zero:

E(ηI)
m0a(ηI)

≡ (r′I)
2 + v2

I

2
− w2

I = 0, (15)

where r′I = pr(ηI)/mIrI is radial initial velocity; mI = m0a(ηI), rI = r(ηI) are the initial
conformal mass and coordinate distance, and

vI =
Pθ

mIrI
, wI =

√
α

mIrI
(16)

are the orbital velocity and Newtonian one, respectively. It is known that the change of a sign
of the energy means the change of an unrestricted motion of a particle by a ˇnite motion in
the central ˇeld. Therefore, the time ηI can be treated as the time of the capture of a particle
(cosmic object) by the central gravitational ˇeld.

If the initial radial velocity is also equal to zero r′I = 0, the zero energy constraint (15)

v2
I = 2w2

I (17)

becomes the equation for the initial data m0a(ηI)r(ηI ) ≡ mIrI . The solution of this equation
mIrI = P 2

θ /(2α) can give an orbital velocity

vI =
2α
Pθ

= const (18)

of the captured cosmic objects. The fact of the universality of the orbital velocity (18)
for all ellipsoidal trajectories (due to the zero energy initial data of the formation of a
local Universe) gives us a possibility of explaining both the numerous observational data
on the law of the constant orbital velocity [4Ä7] and the anisotropy of the local velocity
ˇeld [3, 4].

The anisotropy of the local velocity ˇeld ∆H = 0 [1, 2] is not compatible with the class
of the isotropic circular trajectories r(η0) ≡ r0, r′ = r′′ = 0 with the equation of motion

v2
0 = w0

(
v0 =

Pθ

m0r0
, w0 =

√
α

m0r0

)
(19)

known as the ®virial theorem¯ [7Ä9] where the initial radius rI can be identiˇed with the
observational radius1. If trajectories belong to a class of ellipsoidal ones, the initial radius rI

does not coincide with the observational radius.

1Remind that the hypothesis of the Cold Dark Matter was proposed in [7, 8] to explain the law of the constant
orbital velocity in the class of the circular trajectories in a nonexpanding Universe, where (19) is valid.
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4. THE EXACT SOLUTION

Let us consider a solution of the Kepler problem, i. e., a motion of an object in the central
ˇeld in the expanding Universe for the rigid state when the densities of energy and pressure
are equal. The cosmic scale factor a can be written as [10]

a(η)2 = [1 + 2H0(η − η0)], (20)

which describes the recent Supernova data [11Ä13] in the relative units [10]. Equation (20)
can be considered as a change of the evolution parameter η → a(η). In terms of the new
variables

y = r/r0, py = pr/m0, v0 = Pθ/r0m0,

where r(η0) = r0 is the present-day data, action (11) takes the form

SA = r0m0

1∫
aI

da

{
py
dy

da
+ v0

dθ

da
− 1
c0

[
p2

y + v2
0/y

2

2
− aw2

0

y

]}
, (21)

where w0 =
√
α/m0r0, c0 = H0r0 are the Newtonian velocity and the Hubble one, respec-

tively, and aI = 1/(1 + zI) is determined with the redshift zI at the moment of formation
η = ηI . The total energy of the system (14) in terms of the new variable takes the form

E(a)
r0m0

=
1
c0

[
p2

y + v2
0/y

2

2
− aw2

0

y

]
. (22)

It is easy to see that v0 is a constant of the motion dv0/da = 0. The equations of the
radial motion

py = c0
dy

da
, c0

dpy

da
=

v2
0

y3
− aw2

0

y2
(23)

can be written in the Lagrangian form

d2y

da2
=

(
w0

c0

)2
[(

v0
w0

)2 1
y3

− a

y2

]
. (24)

At the present-day time a = a0 = 1, y0 = 1 this equation determines the second derivative

[
d2y

da2

]∣∣∣∣
a=1

=
(
w0

c0

)2
[(

v0
w0

)2

− 1

]
(25)

in terms of three velocities w0, v0, c0, and it allows us to choose any relations between w0

and v0, in particular v2
0 = 2w2

0, in contrast to the circular trajectory, where v
2
0 = w2

0 .
The general solution of this equation (24) can be obtained in the parametrical form:

a(τ) = c1
N2(τ)

τ2/3N(τ)
, y(τ) = c2τ

2/3N(τ), (26)
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where τ is the parameter of solution with the initial date r0 = r(η0), and

N(τ) = α1U
2(τ) + β1U(τ)V (τ) + γ1V

2(τ), (27)

N2(τ) =
(
τ
dN(τ)
dτ

+
2
3
N(τ)

)2

± 4τ2N2(τ) + ω2∆, (28)

∆ = 4α1γ1 − β2
1 , (29)

c1 =
(
v0
w0

) (
3c0
4w0

)1/3 1
2ω∆1/2

, (30)

c2 =
(
v0
w0

) (
4w0

3c0

)1/3 1
ω∆1/2

. (31)

Three constants α1, β1, γ1 = const can be found from the following system of three equations:

a|τ=0 = a|η=ηI
= aI =

1
1 + zI

, y|τ=0 =
rI

r0
= 1 + zI ,

dy

da

∣∣∣∣
τ=0

= 0; (32)

here for the upper sign (restricted solution at inˇnity, τ = +∞) in (28)

U(τ) = J1/3(τ), V (τ) = Y1/3(τ), and ω =
2
π
, (33)

where J1/3(τ) and Y1/3(τ) are the Bessel functions of the ˇrst and second (or Niemann
function) kind, while for the lower sign (unrestricted solution at inˇnity, τ = +∞) in (28)

U(τ) = I1/3(τ), V (τ) = K1/3(τ), and ω = −1, (34)

where I1/3(τ) and K1/3(τ) are the modiˇed Bessel functions of the ˇrst and second (or
MacDonald function) kind (see, e. g., [14]).

Fig. 1. Graph of function y(τ ) =

a(τ )r(τ )/r0 (26) at v2
0/c2

0 = 0.2 and

w2
0/c2

0 = 0.1

Fig. 2. Graph of functions product a(τ )y(τ )

(26) at v2
0/c2

0 = 0.2 and w2
0/c2

0 = 0.1 for −3 <

a(τ ) < 14



70 Biernacka M. et al.

Fig. 3. Graph of function ∆H (13) in units H0

at v2
0/c2

0 = 0.2 and w2
0/c2

0 = 0.1

Fig. 4. Graph of function ∆H (13) in units
H0 at v2

0/c2
0 = 0.2 and w2

0/c2
0 = 0.1 for

0.8 < a(τ ) < 14

A solution of the equation of motion following from the action (11) is given in Figs. 1
and 2. We use this solution for construction of two plots.

Figure 3 gives the values of the correction (13) to the Friedmann Hubble Aow resulting
from taking into account Eq. (13). It is clearly seen that the corrections are dumped with time
and have a quasi-periodical character.

In Fig. 4 the angular distribution of the Hubble Aow correction, as given by (13), is pre-
sented. The correction is anisotropic. We consider the 2-dimensional case while Karachent-
sev's anisotropy is observed in 3-dimensions. Nevertheless, our 2-dimensional analysis allows
one to see the anisotropy of the Hubble Aow and to estimate the order of the magnitude of
the anisotropy.

We have considered the case when the formation of a galaxy began from the zero energy
state (the initial data E0 = 0, and velocity y′0 = 0). These data correspond to the relation
v2
0 = 2w2

0.

CONCLUSION

Our paper was motivated by the ˇnding that in the local Universe the velocity ˇeld is
anisotropic [3, 4]. This effect is difˇcult for explanation. The only possible suggestion, but
rejected by Karachentsev, was rotation [4]. We are trying to ˇnd the origin of this anisotropy.
In ordered to do this, we consider the general uniform expansion of the Universe. Since this is
the nearby (less than 8 Mpc) part of the Universe around us, we use the Newtonian approach.
We studied the motion of the test massive particle in the central gravitational ˇeld on the
background of cosmic evolution of the type of FLRW space-time with uniform expansion.
We assume the rigid state of the matter when densities of energy and pressure are equal and
which corresponds to conformal cosmology [10] compatibles with Supernova data [11]. We
obtained the exact solution of the above-mentioned Kepler problem, to ˇnd the difference
between the uniform Hubble Aow and our case. We have shown that this difference was
anisotropic. In such a way we explained the anisotropy of the local velocity ˇeld by the
Newtonian motion of galaxies in the central ˇeld. Of course, our 2-D consideration shows a
possible mechanism of the observed 3-D anisotropy.
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Having the solution of the Kepler problem we admit the rotation of galaxies around the
centre of the local Universe. This local Universe must be regarded as the Local Group of
galaxies. In such a way, we support the picture in which galaxies rotate around the centre of
the Local Group in the class of ellipsoidal trajectories.
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