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CURVATURE DECOMPOSITION AND THE
EINSTEIN-YANG-MILLS EQUATIONS

A. N. Tsyrulev'

Tver State University, Russia

The Einstein equations are written in the form of equalities for O(1, 3) invariant components of
the curvature tensor field. The «material part» of the curvature is expressed in terms of the energy-
momentum tensor field. In this approach the self-gravitating Yang-Mills fields are considered, and
a reduced set of equations are obtained for them in the general form. In the spherically symmetric
space-time the equations are written explicitly for the SU(2) gauge group. It is shown that the Bianchi
identities allow one to except some of the gauge field equations.

Vp BHeHust DUHIITEHH 3 MHC Hbl B Buge cootHornenuil s O(1,3)-UHB pH HTHBIX KOMIIOHEHT
HONS TEH30p KpUBH3HBL [Ipu 3TOM «M TepH JIbH S 4 CTb» KPUBU3HBI BBIP X€H 4Yepe3 KOMIIOHEHTHI
TEH30p BHEPTHU-UMITYJC . B 9TOM mopxone p cCMOTpeHBl ¢ MOTp BUTUpYyoIUe mons Sur —Mumnc
U A HUX B OOIIEM BHIE MONydeH MpUBEJEHH S CHcTeM yp BHeHMi. s ciyd g cepudecKu-cum-
METPUYHOTO MPOCTP HCTB -BPEMEHH Yp BHEHHMs BBIIMC HBI SBHO Il K JIMOpoBouHOW rpymmst SU(2).
ITok 3 HO, 4TO ToXAecTB bBH HKU MO3BONSAIOT MCKIIOYUTh HEKOTOPBIE yp BHEHUS A K JTHOPOBOYHOIO
OIS,

INTRODUCTION

The most of non-Abelian solutions in the Einstein—Yang—Mills (EYM) theory are obtained
numerically [1]. Because of nonlinearity of the equations even the correct boundary problem
formulation is sufficiently hard, although the existence of solutions has been proved rigorously
in some cases. In this connection, analytical investigations of the inner structure of the EYM
equations can be useful, firstly, in order to convert the system into a more convenient form
for numerical calculation and, secondly, for a deeper understanding of the interaction between
gravity and the Yang—Mills fields.

The aim of this paper is to rewrite the Einstein equations in terms of the components
of O(1,3) decomposition of the curvature tensor field and to apply the obtained system
to the self-gravitating spherically symmetric SU(2) Yang-Mills fields. The direct profit of
this reformulation consists in the exception, by using the Bianchi identities, of some Yang—
Mills equations from the EYM system; moreover, for the field of pure magnetic type they
can be excepted at all. In Sec.1 we consider briefly the curvature decomposition and the
transformation of the Einstein equations in the general case. In Sec.2 the obtained system is
reduced to the spherically symmetric case, and the Bianchi identities are written explicitly.
In Sec.3, from this point of view, the nonstationary spherically symmetric SU(2) EYM
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equations are obtained with remaining of the gauge freedom for three metric functions. A
special gauge of the Kruskal type is also considered.

It is important to emphasize that the approach presented can be applied in the same
manner to other self-gravitating systems of material fields, which are intensively investigated
now [2-4].

1. CURVATURE DECOMPOSITION AND EINSTEIN EQUATIONS

Let M be a space-time, g a metric of the signature (+ — ——) on M, (e;) and (&)
(i =0,1,2,3) dual orthonormal tetrads of vector field and 1-forms in some region of M. We
consider the curvature R as a (0, 4) tensor field with the well-known O(1, 3) decomposition,
written briefly as [5]

R=C+H, H:%g@ro, (1)

where r is the Ricci tensor field and rg its traceless part; @ the Kulcarni-Nomizu product
defined on tetrad elements by

(e )P(eF@el) = (' AeF) @ (e7 Aeh).

Note that C' is O(1, 3) reducible and can be decomposed into the sum C = W + (s/24) gDy,
where W is the Weyl tensor field and s the scalar curvature.
The Einstein equations r — (1/2)sg = kT are equivalent to

ro = KTy, s=—rtrT,

where T} is the traceless part of the energy-momentum tensor field and tr 7 its trace with
respect to the metric. Therefore, in accordance with (1), they are equivalent to the equations

trC = —trT, H:gg(/DTO. )

The left sides of equations (2) should be expressed in terms of the metric functions. It
is convenient to use the orthonormal basis (a?, *a®) (A = 1,2,3 and * is the Hodge star)
defined by

aA:eO/\eA, *041:63/\62, *aQ:el/\e?’, xa =e? Nel.

To make this formalism more visual, one can write the curvature decomposition in the matrix
form as follows:

e (5o = e (_4)+ ()2

Here

_lp Clgysny gl _lg g
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are 3 x 3 matrices, and two summands in (3) give us C' and H. Now equations (2) take the
form

K K
el =t K11:Z(T11—T00—T22—T33);
K K
Koy = Z(T22 — Too — Th1 — T33), K3z = Z(T33 — Too — T — Th2), 4

K K K K
Kap = §TAB (A#B), Lz = §T01, L3 = §T02, Ly = §T03-

These are the Einstein equations written in terms of the components of the O(1, 3) curvature
decomposition.

2. SPHERICALLY SYMMETRIC SPACE-TIME
We assume the metric in the standard form
ds®> = A%dt* — B2dr? — C*(d6? + sin® 0 d¢?),

where A, B, C are functions of ¢ and r.

Let
1 1 1

Eam ez = —0p, e3 = m3¢7

and lower indices 0, 1 denote the derivatives in the directions of eg and eq; i.e., fo = egf,

f1 = e1f for any function f. The space-time is of type I by Petrov, and the nonvanishing
coefficients of matrices (4) are

1
€0 = Zam €1 =

B
U= dlag (Ua —u, _U’)a K= dlag (f) h7 h)7 Ly = q= % - 58217

po LA CI-Ci—-1 Bw Lo L (G AC Co BiGo
o2\ 4 c? B) "““2\¢ Tac ~ ¢ BC)
(5)
po L(An CI-CE-1 Bw Lol Cu  AC Cu  BoCo
2\ 4 c? B ) "2\ ¢ T ac  © " "BC )
The Bianchi identities have the form
Cl Al C() B() B
(“—h)l+(f_h+v+u)6—2h7+(J0+qE+2q§ =0,
(f—U)1+2(f—h—v—u)%+2q% =0,
Co By Cy A
(utho+(f+htvtu)z+2hm —a—ag 20— =0,
C C
(f—U)o—i-Q(f—i—h—v—u)Eo —2q61 =0.
From these equalities one can easily obtain
(fCY1  _(A2C2h);,  _(B2C?q)o
04 -2 A202 + 3202 = (’U — 2U)1 (6)
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c4 B2C?h A%C?
(fc4)° 4ol 3202)0 ol AQC;])I = (v — 2u)o. %)
If the Einstein equations hold, we can exchange f,h,q and v — 2u = tr U for the right
sides of equations (5). Then equations (6) and (7) should be considered as ones for fields
and matter. It turns out that dynamics of the perfect fluid and electrodynamics are contained
in these equations. This is true in the general case, not only for the spherical symmetry,
except the pure wave fields. However, for non-Abelian gauge fields the situation is more
complicated.
We assume the standard Lagrangian [2] of the classical EYM system for a semi-simple
gauge group &, with Yang-Mills charge v = v47G (¢ = 1) and suitable normalization of
the Killing product in Lie algebra g, so that

K 1 L
§Tk’m = ngmﬂj e ngik’ ' ij-

Generally, it is more convenient to use invariant notations. For a Yang-Mills field
F:FA®04A+FA®*04A,
one can easily find in the right side of (2)

gg ®To = —FQF — xF& * F,

where the dot denotes the Killing product.
Therefore, equations (4) take the form

trtU=0, Kap=—Fa-Fp—Fa-Fg, Lap=Fa-Fp—Fs-Fg. (8)

These are the Einstein part of the EYM equations for arbitrary Yang—Mills field in the
general case.

3. SPHERICALLY SYMMETRIC SU (2) EYM EQUATIONS

Note that the spherical symmetry of space-time does not demand the same symmetry of the
Yang-Mills field for arbitrary gauge group, as it follows from (8). It is necessary only that the
expressions in the right side of (8) be in accordance with the conditions K45 =0 (4 # B),
Kay = K33, Li2 = L1z = 0. However, for SU(2) gauge group the space-time spherical
symmetry means also the same symmetry for the Yang-Mills field [4,6].

The spherically symmetric gauge potential

t 60
Q:%ﬁ@@o—%m@e?’—i— (%Tg—coc( 7'1) ®€3,

where 74 - T = dap, gives us the Yang-Mills field

F = _%n ®a' + (—%TQ + %73) ® o’ + (%TQ + %73) ® o+
2 _
+w Tl®*a1+ﬂ72®*a2—ﬂ7'3®*a3,

C? C C
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and the Yang-Mills equation dg * F' = 0 can be reduced to the set

(Awy)y . w(l —w?)  a?w  (Bwo)o

A e twm g Y
9)
C?%aq n C?%ay B 2a_w2 Baw? ~0
A ), A ), Tav A ),

On the other hand, substituting

B _ 1— 2\2
f=-F -F-F -F=-4 (1 —w*

h=_—F - -F—F B :—(%)2— (%)2— (%)2

~ ~ wWow
qEFQ-Fg—FQ-ng—Z 821

in (6) and (7), we get

(Aw1)1  w(l —w?) aQ_w (Bwo)o
“’1< 1 T T B

_m ((Ca) ety
oAa\\"4 ), "4
wo ((Aw1)1 n w(l —w?)  dw

L @w_ (Buol _m (Clar) o (Baw\
A c? A2 B 24\ 4 ), 4B .

A
These equations should be compared with (9) in order to see that only two (one, in the static

case) of the Yang—Mills equations are independent. So, from (5), (8) and (9) one can obtain
the complete EYM system in the form

An ACy Cin C}—CZ—1 By Coo ByCy
29 ol AT 0T 2 00 900 =
A e Yot e B ¢ *Bo "
(A GGl B 6 (1-w)
2\ A C? B A? Cc4 ’
(10)
1 Cll A101 COQ BQCQ - aw \ 2 wo 2 w1 2
5(‘?* Aac ¢ BC>_(A—C) () +(E)
% . BQCQ - _2w0w1 02a1 -0 C’2a1 o 2a_U}2
c BC T A ), A ), - TAa

if w depends on t only as in some cosmological models, the latter equation should be
exchanged for (Baw?/A)o = 0.
It is interesting to consider the special gauge and new variables:

A=B, €=(@t+n/2, g=(-r)/2
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For simplicity we suppose a = 0, then system (10) reduces to

i(ﬁ) +2Cn5+CnC§ L:O

2\ ), Pect e T e
92
L AN GG 1 —w?)? (11)
v\ ), T eete ci
Cee AeCe We & A, Cy wn2
_lee o Acbe pwe o Cm g _oln
c A Tt o T4Tac o2

In spite of the special gauge this form of EYM system is universal in some respects. For
example, assuming that the metric functions A, C depend on r = ¢ —n and w = 0, A%2 = (',
we obtain the Reissner—Nordstrem solution with unit magnetic charge and A? =1 —2m/C +
1/C?. On the other hand, for the metric function depending on &7 and w = 1, the Kruskal

ansatz o o 3 o
<o N 2 32m ¢
(2m 1) P (2m> = 4, A= c P\ 7om

gives us the extended Schwarzschild solution.

CONCLUSION

The presented method of reduction of the Einstein equations allows one to efficiently take
into account specific features of sources of gravitational field. Also the curvature decomposi-
tion separates the «material part» from the curvature tensor field, so that the Bianchi identities
contain the dynamics equations for sources of gravity. We demonstrate this for the SU(2)
Yang-Mills field; however, the method can be applied to an arbitrary self-gravitating system
without essential modification.
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