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CURVATURE DECOMPOSITION AND THE
EINSTEINÄYANGÄMILLS EQUATIONS

A. N. Tsyrulev1

Tver State University, Russia

The Einstein equations are written in the form of equalities for O(1, 3) invariant components of
the curvature tensor ˇeld. The ®material part¯ of the curvature is expressed in terms of the energy-
momentum tensor ˇeld. In this approach the self-gravitating YangÄMills ˇelds are considered, and
a reduced set of equations are obtained for them in the general form. In the spherically symmetric
space-time the equations are written explicitly for the SU(2) gauge group. It is shown that the Bianchi
identities allow one to except some of the gauge ˇeld equations.

“· ¢´¥´¨Ö �°´ÏÉ¥°´  § ¶¨¸ ´Ò ¢ ¢¨¤¥ ¸µµÉ´µÏ¥´¨° ¤²Ö O(1, 3)-¨´¢ ·¨ ´É´ÒÌ ±µ³¶µ´¥´É
¶µ²Ö É¥´§µ·  ±·¨¢¨§´Ò. �·¨ ÔÉµ³ ®³ É¥·¨ ²Ó´ Ö Î ¸ÉÓ¯ ±·¨¢¨§´Ò ¢Ò· ¦¥´  Î¥·¥§ ±µ³¶µ´¥´ÉÒ
É¥´§µ·  Ô´¥·£¨¨-¨³¶Ê²Ó¸ . ‚ ÔÉµ³ ¶µ¤Ìµ¤¥ · ¸¸³µÉ·¥´Ò ¸ ³µ£· ¢¨É¨·ÊÕÐ¨¥ ¶µ²Ö Ÿ´£ ÄŒ¨²²¸ 
¨ ¤²Ö ´¨Ì ¢ µ¡Ð¥³ ¢¨¤¥ ¶µ²ÊÎ¥´  ¶·¨¢¥¤¥´´ Ö ¸¨¸É¥³  Ê· ¢´¥´¨°. „²Ö ¸²ÊÎ Ö ¸Ë¥·¨Î¥¸±¨-¸¨³-
³¥É·¨Î´µ£µ ¶·µ¸É· ´¸É¢ -¢·¥³¥´¨ Ê· ¢´¥´¨Ö ¢Ò¶¨¸ ´Ò Ö¢´µ ¤²Ö ± ²¨¡·µ¢µÎ´µ° £·Ê¶¶Ò SU(2).
�µ± § ´µ, ÎÉµ Éµ¦¤¥¸É¢  Z¨ ´±¨ ¶µ§¢µ²ÖÕÉ ¨¸±²ÕÎ¨ÉÓ ´¥±µÉµ·Ò¥ Ê· ¢´¥´¨Ö ¤²Ö ± ²¨¡·µ¢µÎ´µ£µ
¶µ²Ö.

INTRODUCTION

The most of non-Abelian solutions in the EinsteinÄYangÄMills (EYM) theory are obtained
numerically [1]. Because of nonlinearity of the equations even the correct boundary problem
formulation is sufˇciently hard, although the existence of solutions has been proved rigorously
in some cases. In this connection, analytical investigations of the inner structure of the EYM
equations can be useful, ˇrstly, in order to convert the system into a more convenient form
for numerical calculation and, secondly, for a deeper understanding of the interaction between
gravity and the YangÄMills ˇelds.

The aim of this paper is to rewrite the Einstein equations in terms of the components
of O(1, 3) decomposition of the curvature tensor ˇeld and to apply the obtained system
to the self-gravitating spherically symmetric SU(2) YangÄMills ˇelds. The direct proˇt of
this reformulation consists in the exception, by using the Bianchi identities, of some YangÄ
Mills equations from the EYM system; moreover, for the ˇeld of pure magnetic type they
can be excepted at all. In Sec. 1 we consider brie_y the curvature decomposition and the
transformation of the Einstein equations in the general case. In Sec. 2 the obtained system is
reduced to the spherically symmetric case, and the Bianchi identities are written explicitly.
In Sec. 3, from this point of view, the nonstationary spherically symmetric SU(2) EYM
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equations are obtained with remaining of the gauge freedom for three metric functions. A
special gauge of the Kruskal type is also considered.

It is important to emphasize that the approach presented can be applied in the same
manner to other self-gravitating systems of material ˇelds, which are intensively investigated
now [2Ä4].

1. CURVATURE DECOMPOSITION AND EINSTEIN EQUATIONS

Let M be a space-time, g a metric of the signature (+ − −−) on M , (ei) and (ei)
(i = 0, 1, 2, 3) dual orthonormal tetrads of vector ˇeld and 1-forms in some region of M . We
consider the curvature R as a (0, 4) tensor ˇeld with the well-known O(1, 3) decomposition,
written brie_y as [5]

R = C + H, H =
1
2
g©∧ r0, (1)

where r is the Ricci tensor ˇeld and r0 its traceless part; ©∧ the KulcarniÄNomizu product
deˇned on tetrad elements by

(ei ⊗ ej)©∧ (ek ⊗ el) = (ei ∧ ek) ⊗ (ej ∧ el).

Note that C is O(1, 3) reducible and can be decomposed into the sum C = W +(s/24) g©∧ g,
where W is the Weyl tensor ˇeld and s the scalar curvature.

The Einstein equations r − (1/2)sg = κT are equivalent to

r0 = κT0, s = −κ trT,

where T0 is the traceless part of the energy-momentum tensor ˇeld and trT its trace with
respect to the metric. Therefore, in accordance with (1), they are equivalent to the equations

trC = −trT, H =
κ

2
g©∧ T0. (2)

The left sides of equations (2) should be expressed in terms of the metric functions. It
is convenient to use the orthonormal basis (αA, ∗αA) (A = 1, 2, 3 and ∗ is the Hodge star)
deˇned by

αA = e0 ∧ eA, ∗α1 = e3 ∧ e2, ∗α2 = e1 ∧ e3, ∗α3 = e2 ∧ e1.

To make this formalism more visual, one can write the curvature decomposition in the matrix
form as follows:

R = (αT ∗αT )
(
P ST

S Q

)
⊗

( α

∗α
)

= (αT ∗αT )
((

U V

V − U

)
+

(
K − L

L K

))
⊗

( α

∗α
)
. (3)

Here

U =
1
2
(P −Q), V =

1
2
(S + ST ), K =

1
2
(P + Q), L =

1
2
(S − ST )
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are 3 × 3 matrices, and two summands in (3) give us C and H . Now equations (2) take the
form

trU =
κ

4
trT, K11 =

κ

4
(T11 − T00 − T22 − T33),

K22 =
κ

4
(T22 − T00 − T11 − T33), K33 =

κ

4
(T33 − T00 − T11 − T22), (4)

KAB =
κ

2
TAB (A �= B), L32 =

κ

2
T01, L13 =

κ

2
T02, L21 =

κ

2
T03.

These are the Einstein equations written in terms of the components of the O(1, 3) curvature
decomposition.

2. SPHERICALLY SYMMETRIC SPACE-TIME

We assume the metric in the standard form

ds2 = A2dt2 −B2dr2 − C2(dθ2 + sin2 θ dφ2),

where A,B,C are functions of t and r.
Let

e0 =
1
A
∂t, e1 =

1
B
∂r, e2 =

1
C
∂θ, e3 =

1
C sin θ

∂φ,

and lower indices 0, 1 denote the derivatives in the directions of e0 and e1; i. e., f0 = e0f ,
f1 = e1f for any function f . The space-time is of type I by Petrov, and the nonvanishing
coefˇcients of matrices (4) are

U = diag (v,−u,−u), K = diag (f, h, h), L32 = q =
C01

C
− B0C1

BC
,

v = −1
2

(
A11

A
+

C2
1 − C2

0 − 1
C2

− B00

B

)
, u =

1
2

(
C11

C
+

A1C1

AC
− C00

C
− B0C0

BC

)
,

(5)

f = −1
2

(
A11

A
− C2

1 − C2
0 − 1

C2
− B00

B

)
, h =

1
2

(
−C11

C
+

A1C1

AC
− C00

C
+

B0C0

BC

)
.

The Bianchi identities have the form

(u − h)1 + (f − h + v + u)
C1

C
− 2h

A1

A
+ q0 + q

C0

C
+ 2q

B0

B
= 0,

(f − v)1 + 2(f − h− v − u)
C1

C
+ 2q

C0

C
= 0,

(u + h)0 + (f + h + v + u)
C0

C
+ 2h

B0

B
− q1 − q

C1

C
− 2q

A1

A
= 0,

(f − v)0 + 2(f + h− v − u)
C0

C
− 2q

C1

C
= 0.

From these equalities one can easily obtain

(fC4)1
C4

− 2
(A2C2h)1
A2C2

+ 2
(B2C2q)0
B2C2

= (v − 2u)1. (6)
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(fC4)0
C4

+ 2
(B2C2h)0
B2C2

− 2
(A2C2q)1
A2C2

= (v − 2u)0. (7)

If the Einstein equations hold, we can exchange f, h, q and v − 2u = trU for the right
sides of equations (5). Then equations (6) and (7) should be considered as ones for ˇelds
and matter. It turns out that dynamics of the perfect _uid and electrodynamics are contained
in these equations. This is true in the general case, not only for the spherical symmetry,
except the pure wave ˇelds. However, for non-Abelian gauge ˇelds the situation is more
complicated.

We assume the standard Lagrangian [2] of the classical EYM system for a semi-simple
gauge group G, with YangÄMills charge γ =

√
4πG (c = 1) and suitable normalization of

the Killing product in Lie algebra g, so that

κ

2
Tkm =

1
4
gkmFij · F ij − gijFik · Fjm.

Generally, it is more convenient to use invariant notations. For a YangÄMills ˇeld

F = FA ⊗ αA + F̃A ⊗ ∗αA,

one can easily ˇnd in the right side of (2)

κ

2
g ©∧ T0 = −F ⊗̇F − ∗F ⊗̇ ∗ F,

where the dot denotes the Killing product.
Therefore, equations (4) take the form

trU = 0, KAB = −FA · FB − F̃A · F̃B , LAB = FA · F̃B − F̃A · FB. (8)

These are the Einstein part of the EYM equations for arbitrary YangÄMills ˇeld in the
general case.

3. SPHERICALLY SYMMETRIC SU(2) EYM EQUATIONS

Note that the spherical symmetry of space-time does not demand the same symmetry of the
YangÄMills ˇeld for arbitrary gauge group, as it follows from (8). It is necessary only that the
expressions in the right side of (8) be in accordance with the conditions KAB = 0 (A �= B),
K22 = K33, L12 = L13 = 0. However, for SU(2) gauge group the space-time spherical
symmetry means also the same symmetry for the YangÄMills ˇeld [4, 6].

The spherically symmetric gauge potential

Ω =
a

A
τ1 ⊗ e0 − w

C
τ2 ⊗ e3 +

(
w

C
τ3 −

cot θ
C

τ1

)
⊗ e3,

where τA · τB = δAB , gives us the YangÄMills ˇeld

F = −a1

A
τ1 ⊗ α1 +

(
− aw

AC
τ2 +

w0

C
τ3

)
⊗ α2 +

(w0

C
τ2 +

aw

AC
τ3

)
⊗ α3+

+
w2 − 1
C2

τ1 ⊗ ∗α1 +
w1

C
τ2 ⊗ ∗α2 − w1

C
τ3 ⊗ ∗α3,
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and the YangÄMills equation dΩ ∗ F = 0 can be reduced to the set

(Aw1)1
A

+
w(1 − w2)

C2
+

a2w

A2
− (Bw0)0

B
= 0,

(
C2a1

A

)
1

+
(
C2a1

A

)
0

= 2
aw2

A
,

(
Baw2

A

)
0

= 0.

(9)

On the other hand, substituting

f ≡ −F1 · F1 − F̃1 · F̃1 = − a2
1

A2
− (1 − w2)2

C4
,

h ≡ −F2 · F2 − F̃2 · F̃2 = −
( aw

AC

)2

−
(w0

C

)2

−
(w1

C

)2

,

q ≡ F2 · F̃3 − F̃2 · F3 = −2
w0w1

C2

in (6) and (7), we get

w1

(
(Aw1)1

A
+

w(1 − w2)
C2

+
a2w

A2
− (Bw0)0

B

)
− a1

2A

((
C2a1

A

)
1

− 2
aw2

A

)
= 0,

w0

(
(Aw1)1

A
+

w(1 − w2)
C2

+
a2w

A2
− (Bw0)0

B

)
− a1

2A

(
C2a1

A

)
0

− a

AB

(
Baw2

A

)
0

= 0.

These equations should be compared with (9) in order to see that only two (one, in the static
case) of the YangÄMills equations are independent. So, from (5), (8) and (9) one can obtain
the complete EYM system in the form

A11

A
+ 2

A1C1

AC
+ 2

C11

C
+

C2
1 − C2

0 − 1
C2

− B00

B
− 2

C00

C
− 2

B0C0

BC
= 0,

− 1
2

(
A11

A
− C2

1 − C2
0 − 1

C2
− B00

B

)
=

a2
1

A2
+

(1 − w2)2

C4
,

1
2

(
−C11

C
+

A1C1

AC
− C00

C
+

B0C0

BC

)
=

( aw

AC

)2

+
(w0

C

)2

+
(w1

C

)2

,

C01

C
− B0C0

BC
= −2

w0w1

C2
,

(
C2a1

A

)
0

= 0,
(
C2a1

A

)
1

= 2
aw2

A
;

(10)

if w depends on t only as in some cosmological models, the latter equation should be
exchanged for (Baw2/A)0 = 0.

It is interesting to consider the special gauge and new variables:

A = B, ξ = (t + r)/2, η = (t− r)/2.
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For simplicity we suppose a = 0, then system (10) reduces to

1
A2

(
Aη

A

)
ξ

+ 2
Cηξ

A2C
+

CηCξ

A2C2
+

1
C2

= 0,

− 1
A2

(
Aη

A

)
ξ

+
CηCξ

A2C2
+

1
C2

= 2
(1 − w2)2

C4
, (11)

−Cξξ

C
+ 2

AξCξ

AC
= 2

wξ
2

C2
, −Cηη

C
+ 2

AηCη

AC
= 2

wη
2

C2
.

In spite of the special gauge this form of EYM system is universal in some respects. For
example, assuming that the metric functions A,C depend on r = ξ − η and w = 0, A2 = C′,
we obtain the ReissnerÄNordstrem solution with unit magnetic charge and A2 = 1− 2m/C+
1/C2. On the other hand, for the metric function depending on ξη and w = 1, the Kruskal
ansatz (

C

2m
− 1

)
exp

(
C

2m

)
= −4ξη, A2 =

32m3

C
exp

(
− C

2m

)

gives us the extended Schwarzschild solution.

CONCLUSION

The presented method of reduction of the Einstein equations allows one to efˇciently take
into account speciˇc features of sources of gravitational ˇeld. Also the curvature decomposi-
tion separates the ®material part¯ from the curvature tensor ˇeld, so that the Bianchi identities
contain the dynamics equations for sources of gravity. We demonstrate this for the SU(2)
YangÄMills ˇeld; however, the method can be applied to an arbitrary self-gravitating system
without essential modiˇcation.
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