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A GENERALIZATION OF QUANTUM TELEPORTATION
AND SPLITTING OF ENTANGLEMENT
VIA LOCAL CLONING
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In the original one-to-one teleportation protocol of Bennett et al. [1], an observer Alice transmits
the information of a d-level system to another observer Bob with perfect fidelity, by using a maxi-
mally entangled state. We introduce a generalization called the many-to-many teleportation, where the
information is sent from N observers to M receivers situated at different locations. One of the most
interesting applications of quantum cloning is the symmetric broadcasting of entanglement proposed by
Buzek et al. [2]. We propose the splitting of entanglement based on local optimal universal asymmetric
cloning machine, and then, by applying the Peres—Horodecki criterion, we analyze the inseparability of
the final states.

B opuruH JIbHOM MPOTOKOJE TeAenopT LK oxuH-H -oauH (Bedert u ap. [1]) v Gmiox Tenmb Asic
nepen eT MH(GOPM LU0 O d-ypOBHEBOI cucTeMe apyromy H 6mon Temo BoOy ¢ mue JbHOH TOYHOCTHIO,
UCHOJMIb3yd MEX HU3M 3 IIYT HHBIX COCTOSIHMHA. MBI BBOIMM 0OOOIIEHHE, H 3bIB €MOE TENeNnopT Luen
MHOTUX-H -MHOTHe, Ije HH(opM Ius nepex ercst ot N H Orox Tesnei K M MOMyd TeNsM, H XOTSAIINIMCS
B D 3HBIX MecT X. OIHHM M3 C MBIX MHTEPECHBIX NPHMEHEHHH KB HTOBOTO KJIOHMPOB HHUS SBIISIETCA
CUMMETpPUYECK f Iepel 4 3 IIyT HHBIX COCTOSHMIA, peuloxXeHH o Bysekom u ap. [2]. Msl npemt r em
p 3lelieHde 3 MyT HHBIX COCTOSHME, 6 3upylolleecss H ONTHUM JIbHOW yHHBEpC JIbHOW CHMMETPUYHOI
KJIOHUpYIOLIeld M IIMHe, U 3 TeM, npumeHsd kKpurepuu Ilepec —'opogenkoro, H jaM3upyeM Hecell p -
6enbHOCTh KOHEYHBIX COCTOSTHHUIL.

INTRODUCTION

Quantum entanglement is the basic resource in many quantum information processes such
as quantum teleportation, quantum cryptography, telecloning or superdense coding [3]. Much
work has been devoted to the analysis of quantum teleportation and its possible applications.
Murao et al. have found a generalization of quantum teleportation, namely, one-to-many
teleportation of a d-level system [4].

In Sec.2 we present a new generalization, many-to-many teleportation, where the infor-
mation of a d-level particle is transmitted from N senders to M receivers with the help of a
maximally entangled (N + M)-party state. In Sec.3 we show how one can copy the insepa-
rability of two-qubit system by using local optimal universal asymmetric cloning machines.
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1. ONE-TO-MANY TELEPORTATION

In the standard teleportation scheme proposed by Bennett et al. [1] an unknown qubit
(a state of a d-level system) is faithfully transmitted from one observer, Alice, to another
observer, Bob, while the initial Alice’s state is destroyed. A more general scheme called one-
to-many teleportation was introduced by Murao et al. [4] where the information of a d-level
particle is sent from one sender to M spatially separated receivers denoted by By, ..., Byy;.
Let the initial unknown Alice’s state we wish to teleport be
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d—1
with Z |oar|? = 1, and {| 4% )4} representing a basis in the d-dimensional space. In order

k=0
to perform the teleportation, Alice and M receivers must share a quantum channel, which is

a maximally entangled M + 1-particle state:
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where {|7;)} and {| ¢; )} are bases in the d-level spaces of Alice’s and receivers’ particles,
respectively.
With the help of the generalized Bell basis [1]
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we can write the state of the whole system as
d—1 d—1 d—1 .
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Alice performs a Bell-type measurement and sends the result to M receivers. If the outcome
is | ®.,,n ), then the receivers apply a local unitary operation, which satisfies

2mijn
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=0

Therefore, the information of the initial state contained in the coefficients «j has been
transmitted to M distant parties:

d—1
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=0
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2. MANY-TO-MANY TELEPORTATION

Let us analyze a more general scenario, when the initial information is distributed between
N spatially separated senders Aj, As,..., Ay. We would like to distribute this information
to M receivers located at different places [5]. The initial entangled state is

d—1
‘¢>:Zak|wk>A1‘¢k>A2"'|¢k>AN, (7)
k=0
d—1
with Z lag|? =1, and {| 9y )4, } representing a basis in the d-dimensional space of the jth
k=0
sender.

The quantum channel is defined as a maximally entangled (N + M )-particle state shared
between senders and receivers:

1 d—1
€)= Nz Dolmidag miay 1754y 65) By Bave B ®
=0

where we have the particles denoted by «B» that belong to the receivers. The states {|7; ) }
represent a d-dimensional basis for the ith sender.
The joint state of the initial system and the channel is

d—1 d—1

|[)|€) = L2:0%2:W!«)AWU>A’1Wk>A2|7Tj>A'2"'|¢k>AN\7Tj>A'N®
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p

m ni,n2,...,nN

2mik
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The protocol for many-to-many teleportation is the following:

A) Each sender performs a measurement of his particles in the generalized Bell basis.
B) The senders communicate the result of the measurement to M receivers.

Let us analyze the case when the outcome of the senders’ Bell measurement is:

‘ (I)m’m >‘ (I)m’nz > T ‘ (I)m’nN > (10)
Then, the receivers have to apply a local recovery unitary operation that fulfills:

2mik
Vit nasmn | @k ) = €Xp T(nl +ng+... + nN)] | dr—m - (11)

Therefore, the many-to-many teleportation distributes the information of the initial /V-particle
state (7) into the M -particle state:

d—1 d—1
19) = oyl a, [P )as [ )an = [6) =D ;[ 6)B,Bs B (12)

=0 =0
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3. SPLITTING OF INSEPARABILITY VIA LOCAL CLONING

Wootters and Zurek have considered a cloning machine that is supposed to copy an
arbitrary qubit and have shown that this is impossible without introducing errors [6]. This
result is known as the no-cloning theorem. Therefore, some approximate methods for cloning
were proposed, where the fidelity between the final identical states and the initial one is
less than the unity [7,8]. In the case of asymmetric cloning (when the two final clones are
not identical), it is interesting when the universal cloning machine is optimal, that means a
machine that creates the second clone with maximal fidelity for the given fidelity of the first
one [9]. Cerf has found the expression of the optimal universal asymmetric cloning machine
of d-level states using a reference state [9]. We have also obtained an equivalent expression
of this cloning machine, by eliminating the reference state [5]:

) B 1 e
Ulj)100) = N TS CENETD) <|J>J>J>+

r=1 r=1

d—1 d—1
+pZ|j>|j+r>j+r>+qZj+r>|j>|j+r>>, (13)

where p + ¢ = 1.

An interesting application of quantum cloning is the broadcasting of entanglement pro-
posed by Buzek et al. [2]. In this process, the entanglement originally shared by two observers
is broadcast into two identical entangled states by using local 1 — 2 optimal universal sym-
metric cloning machine.

Suppose now that we want to copy an entangled state asymmetrically, this means that the
two output states are different. How can we implement this? In what follows, we show that
one can split the entanglement using the optimal universal asymmetric cloning machine by
employing the formula (13) for d = 2:

U(p)|0)]00) = (1000) +p|011) + ¢[ 101)),

1 2 2
+p°+q (14)

Up)|1)]00) = (1111) +p|100) + ¢/ 010)),

1+p? +¢?

with p4+q = 1, where the first two qubits represent the clones and the last one is the ancilla [5].
The initial entanglement shared by two observers, Alice and Bob, is:

[9)12 = | 00) + 5| 11). (15)

Therefore, the state of the total system, consisting of the two particles 1 and 2, and another
four particles, the blank states 3 and 4, and the ancillas 5 and 6, after applying the cloning
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transformation (14) by Alice and Bob, is [5]:

1
V1+p?+¢?
+ 80?110 )13 10 )24 + Bpg| 10 )13] 01 )24 + Bpq| 01 )13 10 )24 + B¢*| 01 )13| 01 Yo4]+
+ 01 )56[cp| 00 )13] 01 )24 + aq| 00 )13] 10 )24 + Bp[ 10 )13| 11 )24 + Bq| 01 )13] 11 )a4]+
+ 10 )56[q| 10 )13] 00 )24 + ap| 01 )13/ 00 )24 + Bp[ 11 )13/ 10 )24 + Bq| 11 )13]| 01 )a4]+
+ 11 )56[ap®| 01 )13] 01 Y24 + apg| 01 )13] 10 )24+
+ apq| 10 )13/ 01 )24 + ag®[ 10 )13 10 )24 + B| 11 )13/ 11 )24]},  (16)

|n) =U(p) @ U(p)| 9 )12]00)35| 00 )16 = {100 )56[cr| 00 )13] 00 )24+

where the particles denoted by odd numbers belong to Alice, while the even particles belong
to Bob.

The input state | 1) )12 is splitted if the following two necessary conditions are satisfied:
(i) the local reduced density operators pi3 and po4 are separable, and (ii) the nonlocal states
p14 and po3 are inseparable. The expression of the reduced density operators of the local
states is:

P13 =p2a = m[a2(1+1?2+q2)\00><00| + B (L+p” +¢)|11)(11 ]+
+(p2q2+ﬂ2q4+ﬂ2q2+062p4+062p2)|01><01‘+
+(p2q2+/32p4+/62p2+a2q4+a2q2)|10><10‘+
+(pg + p°q + pg*)(|01)(10]+10)(01 )]. (17)

Applying the Peres—Horodecki theorem [10, 11], we get the condition for the separability of
the local states

% [1 —V1-4p(1 —p)2] <a’ < % [1 +/1—4p2(1 —p)Q] : (18)

The nonlocal pairs of particles are described by the following density operators:

e = e e ) 00)(00 |+ e +
FO2(1 4+ 9+ )| 11) (11 + 4pgaf3(|00)( 11| 4| 11)(001) +
+(ﬂ2q4—|—ﬂ2q2+O¢2p4+a2p2)|01><01\+
HE' B 4 0%+ a2?)|10)(10 ) (19)

and

P = mw&wz(l+p2+q2)]|00><00\+[p2q2+
+8%(1+p* + ¢*)]|11)(11 | + 4pgaB(] 00 ) (11| + [11)(00 ) +
+(ﬁ2p4+ﬂ2p2+a2q4+a2q2)|01><01H—
+(8%¢* + B%¢* + o®p* + a*p?)|10)(10]}. (20)
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Then, the two nonlocal states are inseparable if

%(1— 1—4A)<a2<%(1+vaZQ, 2D

where

N r'ed* +p%¢" +p'e® +p?¢?
2AE + 2072 + 2p2q% — ® — 2¢6 — gF — pB — 2p6 — p + 18p2g2

(22)

The requirements that 1 — 4\ has to be positive and that the local states are separable when
the nonlocal ones are inseparable lead to

1 1
5(1— —9+2%ﬁ><p<5<1+V—9+2%ﬁ>. (23)

Therefore, we have proved that by applying the local optimal universal asymmetric cloners
on an arbitrary entangled state, one can split the inseparability only in the case when the
parameter p which characterizes the cloning machine satisfies Eq. (23).
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