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A GENERALIZATION OF QUANTUM TELEPORTATION
AND SPLITTING OF ENTANGLEMENT

VIA LOCAL CLONING
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In the original one-to-one teleportation protocol of Bennett et al. [1], an observer Alice transmits
the information of a d-level system to another observer Bob with perfect ˇdelity, by using a maxi-
mally entangled state. We introduce a generalization called the many-to-many teleportation, where the
information is sent from N observers to M receivers situated at different locations. One of the most
interesting applications of quantum cloning is the symmetric broadcasting of entanglement proposed by
Buzek et al. [2]. We propose the splitting of entanglement based on local optimal universal asymmetric
cloning machine, and then, by applying the PeresÄHorodecki criterion, we analyze the inseparability of
the ˇnal states.

‚ μ·¨£¨´ ²Ó´μ³ ¶·μÉμ±μ²¥ É¥²¥¶μ·É Í¨¨ μ¤¨´-´ -μ¤¨´ (�¥´¥ÉÉ ¨ ¤·. [1]) ´ ¡²Õ¤ É¥²Ó �²¨¸ 
¶¥·¥¤ ¥É ¨´Ëμ·³ Í¨Õ μ d-Ê·μ¢´¥¢μ° ¸¨¸É¥³e ¤·Ê£μ³Ê ´ ¡²Õ¤ É¥²Õ �μ¡Ê ¸ ¨¤¥ ²Ó´μ° ÉμÎ´μ¸ÉÓÕ,
¨¸¶μ²Ó§ÊÖ ³¥Ì ´¨§³ § ¶ÊÉ ´´ÒÌ ¸μ¸ÉμÖ´¨°. ŒÒ ¢¢μ¤¨³ μ¡μ¡Ð¥´¨¥, ´ §Ò¢ ¥³μ¥ É¥²¥¶μ·É Í¨¥°
³´μ£¨Ì-´ -³´μ£¨¥, £¤¥ ¨´Ëμ·³ Í¨Ö ¶¥·¥¤ ¥É¸Ö μÉ N ´ ¡²Õ¤ É¥²¥° ± M ¶μ²ÊÎ É¥²Ö³, ´ Ìμ¤ÖÐ¨³¸Ö
¢ · §´ÒÌ ³¥¸É Ì. �¤´¨³ ¨§ ¸ ³ÒÌ ¨´É¥·¥¸´ÒÌ ¶·¨³¥´¥´¨° ±¢ ´Éμ¢μ£μ ±²μ´¨·μ¢ ´¨Ö Ö¢²Ö¥É¸Ö
¸¨³³¥É·¨Î¥¸± Ö ¶¥·¥¤ Î  § ¶ÊÉ ´´ÒÌ ¸μ¸ÉμÖ´¨°, ¶·¥¤²μ¦¥´´ Ö �Ê§¥±μ³ ¨ ¤·. [2]. ŒÒ ¶·¥¤² £ ¥³
· §¤¥²¥´¨¥ § ¶ÊÉ ´´ÒÌ ¸μ¸ÉμÖ´¨°, ¡ §¨·ÊÕÐ¥¥¸Ö ´  μ¶É¨³ ²Ó´μ° Ê´¨¢¥·¸ ²Ó´μ°  ¸¨³³¥É·¨Î´μ°
±²μ´¨·ÊÕÐ¥° ³ Ï¨´¥, ¨ § É¥³, ¶·¨³¥´ÖÖ ±·¨É¥·¨¨ �¥·¥¸ Äƒμ·μ¤¥Í±μ£μ,  ´ ²¨§¨·Ê¥³ ´¥¸¥¶ · -
¡¥²Ó´μ¸ÉÓ ±μ´¥Î´ÒÌ ¸μ¸ÉμÖ´¨°.

INTRODUCTION

Quantum entanglement is the basic resource in many quantum information processes such
as quantum teleportation, quantum cryptography, telecloning or superdense coding [3]. Much
work has been devoted to the analysis of quantum teleportation and its possible applications.
Murao et al. have found a generalization of quantum teleportation, namely, one-to-many
teleportation of a d-level system [4].

In Sec. 2 we present a new generalization, many-to-many teleportation, where the infor-
mation of a d-level particle is transmitted from N senders to M receivers with the help of a
maximally entangled (N + M)-party state. In Sec. 3 we show how one can copy the insepa-
rability of two-qubit system by using local optimal universal asymmetric cloning machines.
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1. ONE-TO-MANY TELEPORTATION

In the standard teleportation scheme proposed by Bennett et al. [1] an unknown qubit
(a state of a d-level system) is faithfully transmitted from one observer, Alice, to another
observer, Bob, while the initial Alice's state is destroyed. A more general scheme called one-
to-many teleportation was introduced by Murao et al. [4] where the information of a d-level
particle is sent from one sender to M spatially separated receivers denoted by B1, . . . , BM .

Let the initial unknown Alice's state we wish to teleport be

|ψ 〉 =
d−1∑
k=0

αk|ψk 〉A, (1)

with
d−1∑
k=0

|αk|2 = 1, and {|ψk 〉A} representing a basis in the d-dimensional space. In order

to perform the teleportation, Alice and M receivers must share a quantum channel, which is
a maximally entangled M + 1-particle state:

| ξ 〉 =
1√
d

d−1∑
j=0

|πj 〉A|φj 〉B1B2···BM , (2)

where {|πj 〉} and {|φj 〉} are bases in the d-level spaces of Alice's and receivers' particles,
respectively.

With the help of the generalized Bell basis [1]

|Φm,n 〉 =
1√
d

d−1∑
k=0

exp
(

2πikn

d

)
|ψk 〉|πk+m 〉, (3)

we can write the state of the whole system as

|ψ 〉| ξ 〉 =
1
d

d−1∑
m=0

d−1∑
n=0

|Φm,n 〉
d−1∑
k=0

exp
(
−2πikn

d

)
αk|φk+m 〉. (4)

Alice performs a Bell-type measurement and sends the result to M receivers. If the outcome
is |Φm,n 〉, then the receivers apply a local unitary operation, which satisˇes

Vm;n = VB1 ⊗ VB2 ⊗ · · · ⊗ VBM =
d−1∑
j=0

exp
(

2πijn

d

)
|φj 〉〈φj+m |. (5)

Therefore, the information of the initial state contained in the coefˇcients αk has been
transmitted to M distant parties:

|φ 〉 =
d−1∑
j=0

αj |φj 〉B1B2···BM . (6)
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2. MANY-TO-MANY TELEPORTATION

Let us analyze a more general scenario, when the initial information is distributed between
N spatially separated senders A1, A2, . . . , AN . We would like to distribute this information
to M receivers located at different places [5]. The initial entangled state is

|ψ 〉 =
d−1∑
k=0

αk|ψk 〉A1 |ψk 〉A2 · · · |ψk 〉AN , (7)

with
d−1∑
k=0

|αk|2 = 1, and {|ψk 〉Aj} representing a basis in the d-dimensional space of the jth

sender.
The quantum channel is deˇned as a maximally entangled (N + M)-particle state shared

between senders and receivers:

| ξ 〉 =
1√
d

d−1∑
j=0

|πj 〉A′
1
|πj 〉A′

2
· · · |πj 〉A′

N
|φj 〉B1B2···BM , (8)

where we have the particles denoted by ®B¯ that belong to the receivers. The states {|πj 〉A′
i
}

represent a d-dimensional basis for the ith sender.
The joint state of the initial system and the channel is

|ψ 〉| ξ 〉 =
1√
d

d−1∑
k=0

αk

d−1∑
j=0

|ψk 〉A1 |πj 〉A′
1
|ψk 〉A2 |πj 〉A′

2
· · · |ψk 〉AN |πj 〉A′

N
⊗

⊗ |φj 〉B1···BM =
1

d
N+1

2

∑
m

∑
n1,n2,...,nN

|Φm,n1 〉|Φm,n2 〉 · · · |Φm,nN 〉×

×
∑

k

exp
[
−2πik

d
(n1 + n2 + . . . + nN )

]
αk|φk+m 〉. (9)

The protocol for many-to-many teleportation is the following:
A) Each sender performs a measurement of his particles in the generalized Bell basis.
B) The senders communicate the result of the measurement to M receivers.
Let us analyze the case when the outcome of the senders' Bell measurement is:

|Φm,n1 〉|Φm,n2 〉 · · · |Φm,nN 〉. (10)

Then, the receivers have to apply a local recovery unitary operation that fulˇlls:

Vm;n1,n2,...,nN |φk 〉 = exp

[
2πik

d
(n1 + n2 + . . . + nN)

]
|φk−m 〉. (11)

Therefore, the many-to-many teleportation distributes the information of the initial N -particle
state (7) into the M -particle state:

|ψ 〉 =
d−1∑
j=0

αj |ψj 〉A1 |ψj 〉A2 · · · |ψj 〉AN → |φ 〉 =
d−1∑
j=0

αj |φj 〉B1B2···BM . (12)
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3. SPLITTING OF INSEPARABILITY VIA LOCAL CLONING

Wootters and Zurek have considered a cloning machine that is supposed to copy an
arbitrary qubit and have shown that this is impossible without introducing errors [6]. This
result is known as the no-cloning theorem. Therefore, some approximate methods for cloning
were proposed, where the ˇdelity between the ˇnal identical states and the initial one is
less than the unity [7, 8]. In the case of asymmetric cloning (when the two ˇnal clones are
not identical), it is interesting when the universal cloning machine is optimal, that means a
machine that creates the second clone with maximal ˇdelity for the given ˇdelity of the ˇrst
one [9]. Cerf has found the expression of the optimal universal asymmetric cloning machine
of d-level states using a reference state [9]. We have also obtained an equivalent expression
of this cloning machine, by eliminating the reference state [5]:

U | j 〉| 00 〉 =
1√

1 + (d − 1)(p2 + q2)

(
| j 〉| j 〉| j 〉+

+ p

d−1∑
r=1

| j 〉| j + r 〉| j + r 〉 + q

d−1∑
r=1

| j + r 〉| j 〉| j + r 〉
)

, (13)

where p + q = 1.

An interesting application of quantum cloning is the broadcasting of entanglement pro-
posed by Bužek et al. [2]. In this process, the entanglement originally shared by two observers
is broadcast into two identical entangled states by using local 1 → 2 optimal universal sym-
metric cloning machine.

Suppose now that we want to copy an entangled state asymmetrically, this means that the
two output states are different. How can we implement this? In what follows, we show that
one can split the entanglement using the optimal universal asymmetric cloning machine by
employing the formula (13) for d = 2:

U(p)| 0 〉| 00 〉 =
1√

1 + p2 + q2
(| 000 〉+ p| 011 〉+ q| 101 〉),

U(p)| 1 〉| 00 〉 =
1√

1 + p2 + q2
(| 111 〉+ p| 100 〉+ q| 010 〉),

(14)

with p+q = 1, where the ˇrst two qubits represent the clones and the last one is the ancilla [5].
The initial entanglement shared by two observers, Alice and Bob, is:

|ψ 〉12 = α| 00 〉 + β| 11 〉. (15)

Therefore, the state of the total system, consisting of the two particles 1 and 2, and another
four particles, the blank states 3 and 4, and the ancillas 5 and 6, after applying the cloning
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transformation (14) by Alice and Bob, is [5]:

| η 〉 = U(p) ⊗ U(p)|ψ 〉12| 00 〉35| 00 〉46 =
1√

1 + p2 + q2
{| 00 〉56[α| 00 〉13| 00 〉24+

+ βp2| 10 〉13| 10 〉24 + βpq| 10 〉13| 01 〉24 + βpq| 01 〉13| 10 〉24 + βq2| 01 〉13| 01 〉24]+
+ | 01 〉56[αp| 00 〉13| 01 〉24 + αq| 00 〉13| 10 〉24 + βp| 10 〉13| 11 〉24 + βq| 01 〉13| 11 〉24]+
+ | 10 〉56[αq| 10 〉13| 00 〉24 + αp| 01 〉13| 00 〉24 + βp| 11 〉13| 10 〉24 + βq| 11 〉13| 01 〉24]+

+ | 11 〉56[αp2| 01 〉13| 01 〉24 + αpq| 01 〉13| 10 〉24+
+ αpq| 10 〉13| 01 〉24 + αq2| 10 〉13| 10 〉24 + β| 11 〉13| 11 〉24]}, (16)

where the particles denoted by odd numbers belong to Alice, while the even particles belong
to Bob.

The input state |ψ 〉12 is splitted if the following two necessary conditions are satisˇed:
(i) the local reduced density operators ρ13 and ρ24 are separable, and (ii) the nonlocal states
ρ14 and ρ23 are inseparable. The expression of the reduced density operators of the local
states is:

ρ13 = ρ24 =
1

(1 + p2 + q2)2
[α2(1 + p2 + q2)| 00 〉〈 00 | + β2(1 + p2 + q2)| 11 〉〈 11 |+

+(p2q2 + β2q4 + β2q2 + α2p4 + α2p2)| 01 〉〈 01 |+
+(p2q2 + β2p4 + β2p2 + α2q4 + α2q2)| 10 〉〈 10 |+
+(pq + p3q + pq3)(| 01 〉〈 10 |+ | 10 〉〈 01 |)]. (17)

Applying the PeresÄHorodecki theorem [10, 11], we get the condition for the separability of
the local states

1
2

[
1 −

√
1 − 4p2(1 − p)2

]
� α2 � 1

2

[
1 +

√
1 − 4p2(1 − p)2

]
. (18)

The nonlocal pairs of particles are described by the following density operators:

ρ14 =
1

(1 + p2 + q2)2
{[p2q2 + α2(1 + p2 + q2)]| 00 〉〈 00 |+ [p2q2 +

+β2(1 + p2 + q2)]| 11 〉〈 11 |+ 4pqαβ(| 00 〉〈 11 |+ | 11 〉〈 00 |) +
+(β2q4 + β2q2 + α2p4 + α2p2)| 01 〉〈 01 |+
+(β2p4 + β2p2 + α2q4 + α2q2)| 10 〉〈 10 |} (19)

and

ρ23 =
1

(1 + p2 + q2)2
{[p2q2 + α2(1 + p2 + q2)]| 00 〉〈 00 |+ [p2q2 +

+β2(1 + p2 + q2)]| 11 〉〈 11 |+ 4pqαβ(| 00 〉〈 11 |+ | 11 〉〈 00 |) +
+(β2p4 + β2p2 + α2q4 + α2q2)| 01 〉〈 01 |+
+(β2q4 + β2q2 + α2p4 + α2p2)| 10 〉〈 10 |}. (20)
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Then, the two nonlocal states are inseparable if

1
2

(
1 −

√
1 − 4λ

)
� α2 � 1

2

(
1 +

√
1 − 4λ

)
, (21)

where

λ =
p4q4 + p2q4 + p4q2 + p2q2

2p4q4 + 2p4q2 + 2p2q4 − q8 − 2q6 − q4 − p8 − 2p6 − p4 + 18p2q2
. (22)

The requirements that 1 − 4λ has to be positive and that the local states are separable when
the nonlocal ones are inseparable lead to

1
2

(
1 −

√
−9 + 2

√
21

)
� p � 1

2

(
1 +

√
−9 + 2

√
21

)
. (23)

Therefore, we have proved that by applying the local optimal universal asymmetric cloners
on an arbitrary entangled state, one can split the inseparability only in the case when the
parameter p which characterizes the cloning machine satisˇes Eq. (23).
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