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QUANTUM COMPUTER ELEMENTS
BASED ON COUPLED QUANTUM WAVEGUIDES
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Possible applications of two weakly coupled quantum waveguides for quantum computation are
considered. The approach is based on the resonance phenomena in the system. Two different qubits
interpretations are described. Some single-qubit and two-qubits operations are realized in the framework
of these interpretations.
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INTRODUCTION

Creation of ®hardware¯ for quantum computer is an interesting problem of nanoscience.
There are several ways for realization of quantum computing. It can be based on using
of ion traps, nuclear magnetic resonance, superconducting devices, quantum dots, photonic
crystals, etc. (see, e.g., [1, 2]). It should be mentioned that in spite of the fact that creation
of new quantum algorithms (quantum computer ®software¯) is a mathematical question it
is closely related to the physical problems Å description of electron (or photon) behaviour
in the corresponding quantum systems. Each quantum algorithm (e.g., Shor's algorithm of
factorization, Grover's algorithm, etc.) can be considered as a system of basic quantum gates.
That is why it is necessary to show how to construct the corresponding gate with using of
the chosen quantum system. Moreover, the change of the physical background for quantum
computation leads to the change of the answer for the question: ®What is a qubit for the
system?¯

The present paper is devoted to the description of resonant phenomena in coupled quantum
waveguides and layers and its applications. Resonant character of the electron transport in
weakly coupled waveguides allows one to use the system as a quantum gate. Namely, it is
possible to obtain spin-polarized electron beam (preparation of the initial state for quantum
computing) and to realize one-qubit and two-qubits operations (Hadamard operator, CNOT,
SWAP). The corresponding systems are described in the paper. We don't discuss here the
problem of decoherence, it will be a subject of the following publications.
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1. RESONANCES IN COUPLED WAVEGUIDES

When analyzing the behaviour of ballistic electron in weakly coupled nanowires one
reduces the problem to the spectral problem for the Helmholtz operator (the Schréodinger
operator for free particle) in the complicated domain with the Dirichlet boundary condition.
Some results were obtained earlier. Namely, variational estimates for the bound state (not for
resonances) close to the threshold are in [3, 4], for the combined DirichletÄNeumann case are
in [8]. Asymptotics of the bound states for the Dirichlet case is in [5, 6]. As for resonances
(quasi-bound states), the corresponding asymptotics for the Dirichlet case was constructed in
[7, 8]. Some estimates for the resonances (Dirichlet case) was get in [9]. Natural question
concerning the analogous problem for other boundary conditions was open.

Fig. 1. Geometric conˇguration of the system

We consider 2D waveguides (see Fig. 1) coupled through small window (or a number of
windows). The ballistic electron wave function satisˇes the Helmholtz equation Δψ + k2ψ =
0. We should ˇnd quasi-bound state k2

a and the corresponding function ψ (it is not an
eigenvalue because function ψ doesn't belong to L2 space). In the case of the Dirichlet

boundary condition, the asymptotics of k2
a close to the threshold
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Expressions for the coefˇcients see in [9].
In the case of the Neumann boundary condition at the separating line and the Dirichlet

condition on the other boundaries, the asymptotics (in small a) of quasi eigenvalue (resonance)
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Expressions for the coefˇcients see in [12].
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Comparing the results (1), (2), one can observe that the asymptotics for the Dirichlet and
for the Neumann cases has different orders in respect to a. Namely, the in
uence of the
window is greater for the Neumann case. It is natural because unperturbed solution (without
a window) has maximum of the absolute value at the boundary in the Neumann case and a
node (zero) in the Dirichlet case.

The fact that the resonances have different positions in the Dirichlet and the Neumann cases
can be used for construction of nanodevices. It is possible in sandwich structure of magnetic
and non-magnetic layers that the wave function of electron with one spin orientation satisˇes
the Dirichlet boundary condition and, at the same time, the wave function for an electron with
another spin orientation satisˇes the Neumann condition. It means that for appropriate choice
of the parameters one has the resonance for the electron with one spin orientation (i.e. the
transmission coefˇcient is essentially less than 1 and the re
ection coefˇcient is not zero) and
the absence of the resonance for the electron with another spin orientation (i.e. the re
ection
coefˇcient is zero). Hence, we have a beam of spin polarized re
ected electrons. As for
the transmitted electron beam, it will be partially spin polarized. If we want to obtain fully
transmitted spin polarized electron beam, it is possible to use a system with great number
of coupling windows each of them being sufˇciently far from others (to avoid interference
effects), then the polarization effect accumulates.

2. QUANTUM DEVICES

2.1. ®Waveguide¯ Interpretation. Let us assume qubit as a state of electron in two
adjacent coupled 2D waveguides. Namely, if the electron is localized in one of these strips
(zero-layer) we consider this state as the state |0〉 and if in the other one (ˇrst-layer) as the
state |1〉. Due to the waveguide coupling there are also coherent superpositions of the states
(when the wave function of the electron is distributed between the layers). At the same time,
it is important that the separating barrier is large enough to maintain the coherence of the
qubits during computation.

To prepare the initial state |01, 02, 03, . . . , 0L〉 it is sufˇcient to place electrons in each
zero-layer of qubits. At present time, this preparation can be realized using single electron
pump. Such electron pumps are placed near zero-layer of every qubit. At the end of
calculations, it is necessary to ˇnd the resulting state (by measuring). This operation can be
accomplished with single electron transistor attached to the layer. The main disadvantage of
this circuit is a big response time of single electron transistor.

Single-Qubit Operations. Realization of single-qubit operation is related to a behaviour of
electron in two waveguides coupled thought a window. The states of outgoing and incoming
electrons are related by the rotation matrix

Rx(θ) =
(

cos θ/2 i sin θ/2
i sin θ/2 cos θ/2

)
, (3)

where θ is related to the width of the window and a phase shift. In rough approximation, it is
obtained by the expansion of the wave function into the sum of symmetric and antisymmetric
functions. Waveguide theory (see, e.g., [13]) allows one to obtain more detailed results.

The other single-qubit operation is the shift-phase of two qubit components (transformation
matrix Rz(θ)). To realize this operation it is necessary to insert a potential barrier (the hight
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of which is less than the electron energy) or well in some layer. Then the phase shift of the
wave function is

ϕstep = nπ

(
1 − 1√

1 − V/E

)
. (4)

Note that both the window and the potential barrier lead to some wave re
ection that gives
us some error. Any single-qubit operation can be produced by the combination of operations
described above:

U = eiδRz(α)Rx(θ)Rz(β). (5)

For example, the Hadamard's gate is described as

H = −iRz

(π

2

)
Rx

(π

2

)
Rz

(π

2

)
. (6)

Two-Qubits Operations. To perform two-qubits operation it is necessary to synchronize
the movement of the electrons in different channels. Let us consider the coupling window
located between two layers corresponding to different qubits. To describe this operation
one should consider two-particles problem. The ˇrst approximation gives us the problem of
particle in the ˇeld created by the second electron. It should be stressed that the resonance
peaks are very sharp and the position of the resonance for this case differs from that for the
single-electron case. It is possible to realize the situation when for the chosen energy of the
electron one has the resonance in the two-particle case and the absence of the resonance in
the single-electron case. Let the ˇrst-layers of two qubits be coupled through the window.
For this case, the transformation matrix is

eiγ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiγ

⎞
⎟⎟⎠ , (7)

where the value of the parameter is determined by the window width.

Fig. 2. CNOT in ®waveguide¯ interpretation

Using this operation and the Hadamard's gate we can easily construct CNOT gate (see
Fig. 2):

CNOT = (1 ⊗ H) eiπ (1 ⊗ H). (8)

Due to the resonance existence strong coupling is observed for small window. Moreover,
the resonance range is very narrow and weak variation of the window width can destroy or
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create the resonance. The window size can be slightly varied by bias voltage with using of
MOS structures.

2.2. ®Spin¯ Interpretation. Let us assume qubit as electron spin direction: up-spin electron
corresponds to the state |0〉, and the down-spin electron to the state |1〉. It is necessary to
initialize quantum register before calculations. Initializing can be made by passing electron
through a spin-ˇlter. There are many types of these ˇlters, such as: one using special magnetic
materials [14], ˇlters based on Rashba's effect [15], quantum dots of special structure [16].

Sandwich structure of weakly coupled magnetic/nonmagnetic conducting layers can be
used as a spin-ˇlter. Let the magnetic layers be narrow. The nonmagnetic layers can be
considered as waveguides. The boundary conditions are determined by the number of free
levels in magnetic layers with given spin orientation of the electron. If there are no free
levels for the spin orientation, then one has the Dirichlet condition at the boundary. In
other cases, we have another boundary conditions, for example, the Neumann one. Due to
the difference in resonance position for different boundary conditions and the narrowness of
the resonant peak there exist electron energies corresponding to the resonance for one spin
orientation and the absence of the resonance for another one. Thus, the spin polarized beam
of re
ected electrons appears, and the transmitted beam is partly polarized. The system of
some coupling windows (which are placed at a distance to prevent an appearance of complex
interference effects) gives us a strongly polarized beam. The same structure can be used
for ˇnal measuring of resulting system state. Single-qubit operations can be accomplished
as follows. We can use the applied electromagnetic ˇeld in some domains or ferromagnetic
inclusions inserted in some parts of the semiconductor boundary.

Let us consider the ˇrst method [17]. Even with the absence of external magnetic
ˇelds, spin rotation of a mobile electron can still be achieved with the so-called spin-orbit
interaction. An electron moving with velocity v in a region with a static electric ˇeld E is
forced by the effective magnetic ˇeld B ∼ v ×E which couples with its spin. The spin-orbit
Hamiltonian due to this coupling is H ∼ σ(k × E), where k is the electron wave-vector and
σ = (σx, σy, σz) is the vector of Pauli matrices. The Hamiltonian H contains the necessary
ingredients for implementing spin rotations around two independent axes and, therefore, an
arbitrary single-qubit operation.

Two-qubit operations are accomplished during the interaction of two synchronously pass-
ing electrons in the coupling region. The Hamiltonian of the spin exchange interaction is
Hex = J(t)S1S2, where J(t) is deˇned by the overlapping of the electrons wave functions.
The simplest model of spinÄspin interaction can be obtained in the framework of zero-range
potential method [18]. If interaction time T satisˇes the condition

T∫
0

J(t)
�

dt = π, (9)

then SWAP operation will be executed with the qubits. If the time of the interaction is such
that

T∫
0

J(t)
�

dt =
π

2
, (10)
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then the resulting operation is

√
SWAP = (2i)−1/2

⎛
⎜⎜⎝

(2i)1/2 0 0 0
0 i 1 0
0 1 i 0
0 0 0 (2i)1/2

⎞
⎟⎟⎠ . (11)

Fig. 3. CNOT in ®spin¯ interpretation

The single-qubit operation Rz with
√

SWAP allows one to implement gate CNOT by the
following composition of operations (see Fig. 3):

CNOT = (RA
z (π/2) ⊗ RB

z (−π/2))
√

SWAP(RA
z (π/2) ⊗ 1B)

√
SWAP. (12)

Here the indices A and B correspond to the ˇrst and the second qubits, respectively. Thus,
we come to complete operations system.

There are some difˇculties with the realization of the interaction of any qubit pair. To
perform the operation with any of two qubits it is necessary to localize the corresponding
electrons in the adjacent waveguides. Using of some SWAP operations allows us to shift the
electrons into the neighbor waveguides.

Implementation of two-qubit operations based on the spin exchange interaction gives
us another possibility to realize the single-qubit operations. In this case, ferromagnetic
inclusion is inserted in some part of the semiconductor boundary. The length of this section
predetermines the rotation angle in the single qubit state space.

When we use the ®waveguide¯ interpretation we deal with spinless particles and it is
not necessary to prepare spin-polarized beam of electron, but there are difˇculties with the
localization of the electrons in particular waveguides. For using of the ®spin¯ interpretation
one should prepare the initial spin-polarized electron beam that can be created by the spin-ˇlter
described above. As for the comparison of two suggested qubit interpretations, the ®spin¯
one seems to be preferable for realization.
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