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GEOMETRIC PHASES AND EXACTLY SOLVABLE
TIME-DEPENDENT POTENTIALS
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A method of constructing periodic time-dependent Hamiltonians admitting exact solutions is used
to study the geometric phase. The approach is based on the transformation of soluble time-independent
equations into time-dependent ones by employing a set of special time-dependent transformation opera-
tors. A class of periodic time-dependent Hamiltonians with cyclic solutions is constructed in a closed
analytic form and the nonadiabatic geometric phase is determined in terms of the obtained solutions.
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1. CONSTRUCTION OF A TIME-DEPENDENT HAMILTONIAN

A great deal of investigations in quantum computers refresh interest towards the Berry
phase effect [1] in quantum mechanics. The idea of using unitary evolution operators produced
by non-Abelian Berry phase as quantum calculations was proposed by Zanardi, Pachos,
Rasetti [2, 3] and realized by Pachos and Chountasis [4] in a concrete model of holonomic
quantum computer. In our view, the time-dependent and time-independent exactly solvable
models in quantum theory make it possible to simulate these processes.

Suppose that the state |Ψ(t)〉 of a dynamical system evolves according to the matrix
Schréodinger equation

i
d|Ψ(r, t)〉

∂t
= H(r, t)|Ψ(r, t)〉, H(r, t) = p2

r + V (r, t), (1)

with � = 1 and T periodic time-dependent Hamiltonian, H(t) = H(t + T ), the potential
matrix V (r, t) = {Vij(r, t)} is Hermitian and pr is the momentum operator. Our goal is to
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give the procedure for obtaining a wide class of time-dependent Hamiltonians H(t) for which
exact solutions of (1) can be found. To this end, we use the time-independent Hamiltonian

H̃(r) = p2
r + V (r) (2)

with a real symmetric potential matrix V (r) and �
2/2m = 1, and a unitary time-dependent

transformation S(t)
|Ψ(r, t)〉 = S(t)|Φ(r, t)〉, (3)

by means of which the known time-independent Hamiltonian (2) is changed to the time-
dependent one

H(t) = S(t)H̃S†(t) + iṠ(t)S†(t). (4)

Here |Φ(r, t)〉 satisˇes the equation of motion (1) with the time-independent Hamiltonian
H̃(r) and it is taken in the form

|Φ(r, t)〉 = exp (−iH̃(r)t)|Φ(r, 0)〉. (5)

Clearly, the solutions |Ψ(r, t)〉 and |Φ(r, t)〉 can be properly deˇned by solutions of the
time-independent problem

H̃ |Φ(Ẽ)〉 = Ẽ |Φ(Ẽ)〉. (6)

Note, if the system of Schréodinger equations (6) with some known time-independent Hamil-
tonian H̃(r) is exactly soluble, the system of Eq. (1) with the time-dependent Hamiltonian
(4) admits exact solutions too. The result depends on transformation operators S(t) and the
choice of initial states.

Now consider reconstruction of the 2×2 periodic time-dependent Hamiltonian taken in the
form (1). We start with the time-independent Hamiltonian (2) with the 2 × 2 real symmetric
potential matrix V (r), V12(r) = V21(r). By means of a unitary time-dependent transformation
taken in the form

S(t) = exp (−is · h(t)) = exp

(
−i

3∑
i=1

sihi(t)

)
(7)

the time-independent Hamiltonian (2) with regard to Eqs. (1) and (4) turns to the time-
dependent Hamiltonian

H(r, t) = p2
r + exp (−is · h(t))V (r) exp (is · h(t)) + (s · ḣ(t)). (8)

Here s = (1/2)σ is the spin operator; σ = (σ̂1, σ̂2, σ̂3) and σ̂i are the Pauli matrices and a
dot means a time-derivative. The solutions of (1) with Hamiltonian (8), according to (3) and
(5), are represented as

|Ψ(r, t)〉 = exp (−is · h(t) exp (−iH̃(r)t)|Φ(r, t = 0)〉. (9)

It is convenient to present the 2 × 2 intrinsic time-independent Hamiltonian (2) by the sum
of diagonal and zero trace matrices:

H̃(r) =
(

p2
r +

V11(r) + V22(r)
2

)
Î +

⎛⎜⎜⎝
V11(r) − V22(r)

2
V12(r)

V21(r) −V11(r) − V22(r)
2

⎞⎟⎟⎠ (10)

=
(
p2

r + q(r)
)
Î + 2(s ·B(r)), (11)
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with the evident notations: q(r) = (V11(r) + V22(r))/2, B1(r) = V12(r), B2(r) = 0,
B3(r) = (V11(r) − V22(r))/2 and Î is the identity matrix. It is evident that the Hamiltonian
for the two-coupled system of equations corresponds to the three- or two-dimensional problem
with coordinates Bi dependent on the extra parameter r. Then the time-dependent Hamiltonian
(8) can be represented as

H(r, t) =
(
p2

r + q(r)
)
Î + 2 exp (−is · h(t))(s ·B(r)) exp (is · h(t)) + (s · ḣ(t) =

=
(
p2

r + q(r)
)
Î + 2(s · B(r, t)). (12)

Obviously, the transformation (7) does not change the ˇrst term of (11) (or (10)) and trans-
forms the second term. The Hamiltonians in the forms (12) and (8) can be used for describing
the motion of a spin 1/2-particle in the space-nonuniform and time-dependent magnetic ˇeld
or can be applied for investigating multi-level atoms and nuclei.

In terms of the evolution operator U(t) = U(t, 0), the solution |Ψ(r, t)〉 is

|Ψ(r, t)〉 = U(t)|Ψ(r, 0)〉, U(0) = 1. (13)

It is easy to ˇnd from (9) and (13) a very important relationship between the operators U(t)
and S(t). In the case when |Ψ(r, 0)〉 = |Φ(r, 0)〉 it is

U(t) = S(t)) exp (−iH̃t) = exp (−is · h(t)) exp (−iH̃t). (14)

The evolution operator in one period is written as U(T ) = exp (−is · h(T )) exp (−iH̃T ).
Now let us consider cyclic solutions that after one period T (T = 2π/ω) are recovered up to
the phase, i.e. initial states |Ψν(0)〉 are eigenvectors of U(T )

|Ψν(r, T )〉 = U(T )|Ψν(r, 0)〉 = exp (−iβν)|Ψν(r, 0)〉, (15)

where exp (−iβν) are eigenvalues of U(T ) and βν is the total phase. Let us demand that initial
states are eigenvectors of the time-independent Hamiltonian H̃ , |Ψν(r, 0)〉 = |Φν(r)〉. It is
possible if U(T ) and H̃ commute [U(T ), H̃ ] = 0. Then, we immediately obtain that S(T ) and
H̃ commute: U†(T )H̃U(T ) = S†(T ) exp (−iH̃T )H̃ exp (iH̃T )S(T ) = S†(T )H̃S(T ) = H̃,

i.e. [S(T ), H̃ ] = 0. It is one of the conditions on the choice of transformations S(t). Other
properties of S(t) are evident: they have to be unitary and possess the same matrix dimension
as H̃ . With allowance for (9) the recurrent solutions at any time are written as

|Ψν(r, t)〉 = exp (−is · h(t)) exp (−iẼνt)|Φν(r)〉. (16)

It is evident now that in order to determine the cyclic solutions, we need time-independent
solutions. Thus, whenever H̃(r) is an exactly soluble time-independent Hamiltonian, the
properly generated time-dependent system of equations has cyclic exact solutions. The same
is valid if the stationary equation with the known H̃(r) is solved numerically, then we
construct corresponding time-dependent Hamiltonians in an explicit form in terms of numerical
solutions |Φν(r)〉 of time-independent problem (6). The evolution of an arbitrary initial state

|Ψ(r, 0)〉 =
∑

ν

αν |Ψν(r, 0)〉 can be represented as a superposition of a basis set of recurrent

linearly independent vector solutions, |Ψ(r, t)〉 =
∑

ν

αν |Ψν(r, t)〉.
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2. GEOMETRIC PHASES

Now we can proceed to calculations of physical quantities, such as a geometric phase,
associated with the evolution of cyclic solutions [1], a dynamical phase and an expectation
value of Hamiltonian H(t). To ˇnd the dynamical phase δν , we need the expectation value
εν(t)

δν =

T∫
0

εν(t)dt, (17)

εν(t) = 〈Ψν(r, t)|H(t)|Ψν(r, t)〉 = 〈Ψν(r, 0)|U†(t)H(t)U(t)|Ψν (r, 0)〉. (18)

By using (14) and (4) we have U†(t)H(t)U(t) = ei ˜H(r)t
(
H̃(r)− iS†(t)Ṡ(t)

)
e−i ˜H(r)t. Since

for cyclic solutions |Ψν(r, 0)〉 = |Φν(r)〉 and |Φν(r)〉 is an eigenstate vector of H̃(r) with
eigenvalue Ẽν , we express the expectation value εν(t) and the dynamical phase δν as

εν(t) = Ẽν − 〈Φν(r)|iS†(t)Ṡ(t)|Φν(r)〉, (19)

δν = ẼνT −
T∫

0

〈Φν(r)|iS†(t)Ṡ(t)|Φν(r)〉dt. (20)

The geometric phase ϕν , given by removing the dynamical phase from the total phase βν , is

ϕν = βν − δν = βν − ẼνT +

T∫
0

〈Φν(r)|iS†(t)Ṡ(t)|Φν(r)〉dt. (21)

In the cases when the components of h(t) are linear functions of time, hi(t) = ωit, the
expectation values of H(t) and spin-expectation values for corresponding cyclic solutions are
time-independent. Indeed, the relation (19), with account of Si(t) = exp (−iσiωit) gives the
expectation values of H(t)

εi
ν = 〈Φν(r)|H̃(r)|Φν (r)〉 +

ωi

2
〈Φν(r)|σ̂i|Φν(r)〉 = Ẽν +

ωi

2
¯̂σi

ν , (22)

where the quantities ¯̂σi
ν are the spin-expectation values

¯̂σi
ν = 〈Ψν(r, t)|σ̂i|Ψν(r, t)〉 = 〈Φν(r)|σ̂i|Φν(r)〉 (23)

and do not depend on time. Therefore, and εi
ν in (22) does not depend on time, too.

It is known that the classical periodic system returns to its initial state after a period,
while the quantum system multiplies by an additional Berry phase. For the dynamical phase
δν from (20) with (22) we get

δi
ν =

T∫
0

εi
ν(t)dt = ẼνT + π ¯̂σi

ν . (24)
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Removing the dynamical phase (24) from the total phase βν = π + ẼνT, we get the geometric
phase ϕi

ν

ϕi
ν = (βν − δi

ν) = π(1 − ¯̂σi
ν). (25)

Obviously, the geometric phase is determined by the spin-expectation value ¯̂σi
ν along the

rotating axis. The so-called spin alignment occurs. If ¯̂σi
ν = 0, changing the dynamic phase

angle in a period is determined as βν = ẼνT ; respectively, the geometric phase is ϕi
ν = π.

In other words, changing of the geometric phase in n periods is equal to nπ. It means that
for an even number of periods n = 2, 4, 6, . . . , ϕi

ν is a multiple of 2π and the geometric
Berry phase has no effect on time-dependent periodic solutions. It is a property of stationary
solutions. As evident from (25), for an odd number of periods, the wave function's sign
changes. So, quantization of Berry phase is related to the spin-alignment quantization and it
is important for nuclear high-spin physics (see [6,7]). If within one period ¯̂σi

ν = 1/2, then for
the odd number of periods n = 1, 3, 5, . . . , ϕi

ν is a multiple of π/2, i.e. ϕi
ν = nπ/2; for an

even number of periods n = 2, 4, 6, . . . , ϕi
ν = nπ is a multiple of π and for n = 4, 8, 12, . . .

the geometric phase again has no effect on periodic solutions.
Note also that the position probability density in a given point of space-time

P (r, t) = ||Ψν(r, t)〉|2 = ||Φν(r)〉|2 (26)

does not depend on time. From (22)Ä(26) it follows that Eq. (1) for the obtained family of
the time-dependent potential matrices possesses solutions and properties like time-independent
ones. So, one of the applications of this approach is modelling quantum systems such as wells
and wires with the properties of dynamic localization. In our mind, the presented method is
effective for generating time-dependent periodic Hamiltonians with corresponding geometric
phase, which can be useful for investigation of quantum computing.
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