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A set of deterministic gates based on the quantum measurement is considered. These gates exploit
bipartite entanglement, allow performing any operations on the given qubit states and can be implemented
from biphotons.
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INTRODUCTION

Along with unitary evolution, quantum measurement is a way of changing state of physical
system and can be used as primitive for computation in two measurement-based models.
First of the models is teleportation quantum computation (TQC) [1Ä3] with gates process
on teleportation. Second is one-way quantum computer (1WQC) introduced by H. J. Briegel
[4, 5], in which computation proceeds via local single-qubit measurements on the multiparticle
entangled states, known as cluster or graph states. Relationship between these models has
been studied by many authors, for example, by R. Jozsa [6]. Experimental implementations
of 1WQC using four-qubit optical cluster states have been demonstrated by A. Zeilinger [7]
and experimental analysis of cluster states has been made by H.Weinfurter [8].

In this work we consider a model of measurement-based gates from biphotons. Biphotons
are well known in quantum optics and there is a signiˇcant progress in their generating and
manipulating [9]. We focus on the next questions: 1) which is a structure of the gates from
biphotons, 2) which of operations can be performed. We found that deterministic gates have
to include a set of retrieval operators and they can perform any operation on given input
states. The presented gates are scalable and differ from gates of the TQC and 1WQC models.
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1. RESOURCES

1.1. Biphotons. Biphotons or pair of highly correlated photons are the main resource
of our schemes. They can be generated in down conversion processes in which a photon
of pump transforms into two photons according to the laws of conservation of energy and
momentum. For our purposes we assume that the state of biphoton has the form of the
maximally entangled EinsteinÄPodolskyÄRosen (EPR) pair:

ϕ = (1/
√

2)(|00〉 + |11〉), (1)

where logical variables 0 and 1 can be associated with physical states of polarized light, say,
vertically and horizontally polarized photon |V 〉, |H〉, or with the Fock states with 0 and 1
photon. In experiment the state of biphoton is more complicated and for some regimes of
generation it has the form φ = |vac〉(1− ε2) + ε(|HV 〉+ |V H〉+ . . . ), where ε2 is efˇciency
of generation of biphoton. Here we see a large contribution of vacuum and a small portion
of the desired correlated photons. The ideal state (1) we will consider is achieved after post
selection. It means that biphoton is prepared with some probability given by ε2. However,
the rate of generation of biphotons may be high. In fact, let there be a pulsed-pump laser
with pulse of 100 fs, repetition rate of 100 MHz and the average power 200 mW. Then
probability of generation of pair ε2 is about 10−4 or one pair per 104 pulses and the rate
of generation of bihotons is 104 per second. This is a high rate and it is attractive for real
quantum communications. In experimental implementation of 1QWC a four-photon cluster
state ψ = (1/2)(|HHHH〉 + |HHV V 〉 + |V V HH〉 + |V V V V 〉) has been generated to
proceed with the quantum search algorithm [7]. From the presented estimations it follows
that the rate of generation of the cluster is about one state per second.

1.2. Measurement. The basic property of biphoton is a strong correlation between photons.
Let us perform a measurement of observable Z = σz , where σz is Pauli operator. Operator
Z has eigenstates |0〉, |1〉 known as computation basis and two eigenvalues ±1 to be the
measurement outcomes we will denote by 0 and 1. Considering the measurement of Z on
a photon of biphoton (1), we ˇnd two outcomes 0 and 1 with equal probability 1/2. If
outcome 0 or 1 arises, then the state of the remaining photon is |0〉 or |1〉. Consider two
independent biphotons and the measurements of Z of a photon from each biphotons. We
shall name the photons involved in measurement the working photons and we shall name
the remaining two photons the input and output ones. So, there are two working photons.
Four outcomes 00, 01, 10, 11 result in the four states of the input I and output O photons
|00〉IO, |01〉IO, |10〉IO, |11〉IO. We can ask a question of which of operations connects the
states of I and O photons? It is clear that if outcome 00 or 11 arises, then the states of I
and O photons are equal; therefore, they are connected by the unit operation 1, otherwise
there is a NOT operation. The measurement can be considered as a way of transformation
of state I photon into O photon and we ˇnd a gate. But this gate is not interesting for
computation because of its probabilistic nature due from measurement. In fact, it performs the
desired operation, say NOT with probability of 50%, otherwise there are unwanted outcomes.
However, unwanted outcomes can be exploited if we will correct the state of output photon by
a retrieval operator. For example, to perform NOT operation one needs a retrieval operator to
exploit two unwanted outcomes 00, 11. If we choose this operator as X = σx the output state
can be 
ipped, when unwanted outcomes arise. Then the desired operation is achieved for
any outcomes and one ˇnds a deterministic gate that performs NOT operation. As a result,
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for deterministic gate one needs retrieval operators. These operators are in QTC and 1WQC
models.

2. GATES

2.1. Scheme of Gate. A one-qubit gate consists of two biphotons. There are two working
photons W measured in Z basis and there are I and O photons, which are input and output
of the gate, retrieval operator R manipulates the state of the output photon. The state of the
gate and notation of R read

ϕ⊗2 = (1/2)
∑

n,m=0,1

|n〉I |m〉O|nm〉W ,

R : R(n, m)|m〉 = UG|n〉,
(2)

where UG is a gate operation; n, m are variables of the ˇrst and second biphoton. The
gate processes as follows. If outcome nm arises, then biphotons are projected into the state
|n〉I |m〉O = |n〉IR†UG|n〉O. When the retrieval operator R acts on the output photon, the
state has the form |n〉IUG|n〉O. It means that the gate performs operation UG : |n〉 → UG|n〉.
Two points may be made about it: 1) the input and output of the gate can be spatially
separated, 2) if UG = 1, one ˇnds teleportation.

2.2. Retrieval Operators. Retrieval operator R allows exploiting unwanted outcomes of
the quantum measurement and results in deterministic gate. We found that R is a product of
the form

R(n, m) = UGXn+m, (3)

where the ˇrst operator Xn+m carries out teleportation of input state to output state and the
second operator UG performs the gate operation on the teleported state. The retrieval operator
is a conditional unitary transformation because it depends on the label of the states n and m.
It has the form similar to operator from QTC and 1WQC models. There is a simple optical
implementation of the conditional Xp operation. This is a well-known Pockels cell. If a
voltage is applied the Pockels cell transforms polarized photon H to V and vice versa.

2.3. Gates of QTC and 1WQC Models. There are two protocols for teleporting an un-
known state of qubit. The ˇrst of them has been proposed by C. Bennet et al. [10]. This
protocol accomplishes the task by the EPR channel and two bits of classical information
gained from the Bell-state measurement. In the other teleportation protocol, proposed by
D.Gottesman [1], unknown state of qubit is entangled with ancilla and teleportation is achieved
by one bit of classical information gained from a single-particle measurement. Both protocols
are exploited in the QTC model for the gates that perform operation UG included in their
retrieval operators, which have the form of (3).

A one-way gate, the basis of 1WQC introduced by Briegel [4], consists of three parts:
input, working and output. At ˇrst a cluster state is prepared by entangling all qubits, then
single-particle measurements perform on input and working qubits and the result of operation
is stored in output qubits.

In contrast to the QTC and 1WQC models, our gates have no entanglement between input
and output state. It results in the fact that our gates can perform operation UG on a given
input state only, which however is not destroyed.
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2.4. Two-Qubit Conditional Gates. Due from linearity, the scheme given by (2) can be
directly generalized into multiqubit gates. For example, consider two-qubit gates that perform
two important conditional operations CNOT (controlled NOT) and C-Phase (controlled phase
shift). They belong to a universal set of quantum logical operations. The gates consist of two
output and two input biphotons in the state ϕ⊗4. For measuring a single photon from each
biphoton in Z basis we ˇnd the retrieval operators which allow deterministic operations in
computational basis |0〉, |1〉. Let variables of input and output biphotons be n1, n2 and m1,
m2, then the retrieval operators have the form

CNOT:|n1n2〉 → |n1, n2 ⊕ n1〉, R = [1 ⊗ Xn1 ][Xn1+m1 ⊗ Xn2+m2 ],

C-Phase:|n1n2〉 → (−1)n1n2 |n1, n2〉, R = [1 ⊗ Zn1n2 ][1 ⊗ Xn1+m1 ⊗ Xn2+m2 ].
(4)

From these equations it follows that the gate operations UG = Xn1 , Zn1n2 are included in
the retrieval operators in accordance with (3). Such a structure of R results in the fact that
the measurement is in Z basis only.

2.5. Different Measurement Patterns. Several logical operations can be achieved by
measuring in different bases. Measurement of Z of the working photon from biphoton projects
the reminder photon into one of the eigenstates of Z, which belongs to computational basis.
We can choose a new observable obtained from Z by a unitary transformation S : A = SZS†.
Then the measurement of A on the working photon projects the reminder photon into a state
which can be transformed from computational basis by a unitary operator K dependent on S.
As a result, one can ˇnd that biphoton is an eigenvector of product K and S: (K ⊗S)ϕ = ϕ.
Unitary operation S and K can be considered as a rotation of wave vector. Then any rotation
of one of the photons from biphoton results in rotation of another photon because of its
correlation. This is a key property to achieve the gates on different measurement patterns.
For example, consider two biphotons, whose working photons are measured in Z and in
SZS† basis. Then we ˇnd that the gate performs operation UG = K : |n〉 → K|n〉 and the
retrieval operator has the form KRK†, where R = Xn+m makes teleportation.

Note the main features of this gate. Because of the different measurement patterns the
input state of photon is teleported into the output state up to unitary transformation UG due
from the measurement. Then for any given input states and for any desired gate operation,
there are a set of measurements and retrieval operators that accomplish the task. This result
can be directly generalized to multiqubit gates.
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