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GATES FOR QUANTUM COMPUTING
INDUCED FROM MONODROMY OPERATORS

G.Giorgadze1

Institute of Cybernetics of the Georgian Academy of Sciences, Tbilisi, Georgia

The monodromy approach to quantum computing is based on a holomorphic vector bundle with
meromorphic connection. The gates for computation are obtained from the monodromy matrices of the
connection.
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1. CONSTRUCTION OF THE UNIVERSAL SET
OF GATES BY FUCHSIAN SYSTEM

In this section we present the ideology for constructing universal set of gates for quantum
computation using Fuchsian system of differential equations [1]. This system has quantum
mechanical sense; besides, under certain conditions on the Hamiltonian of quantum system
the corresponding Schréodinger equation reduces to Fuchsian system.

Unlike holonomic quantum computation [2], in the monodromic approach to quantum
computation [3], connection of the vector bundle, which is the main ingredient of this model,
is completely integrable. From the complete integrability of connection it follows that the
holonomy representation of the loop space reduces to the monodromy representation of fun-
damental group of base of the bundle. From one-dimensionality of the base of holomorphic
bundle automatically follows integrability condition of the connection. For this reason we
begin by considering this case.

Denote by Xm = CP 1 \ {s1, . . . , sm} and consider holomorphic vector bundle E → Xm

with connection ω with logarithmic singular points s1, . . . , sm. It means that ω has the form

ω =
m∑

j=1

Aj

z − sj
dz,

where Aj , j = 1, . . . , m are N × N constant matrices. Let γ1, . . . , γm be generators of
fundamental group π1(Xm, z0), where z0 ∈ Xm, of the complex manifold Xm.
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The Chen iterated integral gives the monodromy representation

ρ : π1(CP 1 \ {s1, . . . , sm}, z0) → GLN(C), γi �→ Mj (1)

by

Mj = 1 +
∫
γj

ω +
∫
γj

ωω + . . .

The fundamental group π1(Xm, z0) acts on the space of holomorphic sections of the bundle
E → Xm as v = Mju, where u, v ∈ CN .

The space of holomorphic sections of the bundle E → Xm isomorphic to zero cohomology
group H0(Xm,O(E)), where O(E) denotes the sheaf of the holomorphic sections of the
bundle. On the other hand, H0(Xm,O(E)) is isomorphic to space of solutions of the system
of differential equations

df = ωf. (2)

In the monodromic approach to quantum computing, one is interested in the inverse procedure.
Let U1, . . . , Uk be the set of the unitary operators which are necessary for some quantum

algorithm. Here is a natural question: does there exist a system (2) with monodromy (1)
which gives the gates U1, . . . , Uk as the monodromy? The answer is given by the following
result.

There exists a location of points s1, . . . , sk on the Riemann sphere CP 1 such that, for
given matrices U1, . . . , Uk, there exists a meromorphic connection ω which has at points
s1, . . . , sk the poles of ˇrst order and monodromy representation induced from ω coincides
with the given set of unitary matrices. Moreover, the points s1, . . . , sk can be chosen to lie
on the real axis.

� The proof follows from solvability of Hilbert's 21st problem for Fuchsian system on
the Riemann sphere [1]. More precisely, it is known that for ˇxed data {s1, . . . , sk} ∈ CP 1,
the set of collections {U1, . . . , Uk} ∈ SU(N) for which Hilbert's 21st problem is solvable, is
a dense set in the CP 1 × (SU(N))k. �

Is is appropriate to remark that certain Fuchsian systems are Shréodinger-type equation [4],
which enables one to use the theory of Fuchsian equations in quantum computing. It is
also known [5] that the universal set of gates are given by all 2 × 2-unitary operators and
one unitary entangled operator R : C2 ⊗ C2 → C2 ⊗ C2. It means that there is a vector
|uv〉 = |u〉 ⊗ |v〉 ∈ C2 ⊗ C2 such that R|uv〉 is not decomposable as a tensor product of two
qubits.

Below we give the way to obtain all 2 × 2-unitary operators from the Fuchsian-type
system (2). It is known that a compact Lie group has two generators. Let for SU(2)
these generators be g1, g2. Choose three points s1, s2, s3 ∈ C and generators γ1, γ2, γ3 of
CP 1 \{s1, s2, s3}. It is also known that γ1, γ2, γ3 satisfy the condition γ1γ2γ3 = 1. Consider
the representation of ρ : π1(CP 1 \ {s1, s2s3}) → SU(2), deˇned by relation ρ(γj) = gj ,
j = 1, 2, 3. For the Riemann data ((s1, s2, s3), (g1, g2, g3)), Hilbert's 21st problem is solvable;
therefore, there exist 2 × 2-matrices A1, A2, A3, such that the monodromy representation of
the Fuchsian system

df =
(

A1

z − s1
+

A2

z − s2
+

An

z − s3

)
f

coincides with ρ.
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Let Eρ → CP 1 be the holomorphic vector bundle induced from ρ. The one-form

ω =
A1

z − s1
+

A2

z − s2
+

An

z − sn

deˇnes a connection of this bundle and if we interpret the ˇbre C2 as the space of qubits,
then the monodromy matrices acting on the qubits play the role of quantum gates.

The most natural way from a two-dimensional vector bundle with holomorphic connection
to the unitary operator from C2 ⊗C2 to C2⊗C2 is to consider two bundles with connections
(E1, ω1) and (E2, ω2) and build the rank-4 holomorphic vector bundle E1 ⊗E2 → CP 1 with
ˇbre C2 ⊗ C2 and with connection ω1 ⊗ 1 + 1 ⊗ ω2. However, the monodromy matrices
of this connection do not give an entangled operator. To obtain an entangled operator from

Fuchsian system df = ωf , it is necessary to take ω =
A

z
dz, where

A =

⎛⎜⎜⎝
1 1 0 1
1 −1 1 0
0 1 1 1
1 0 1 −1

⎞⎟⎟⎠ .

The monodromy matrix M = eiA of this system is an entangled operator. The check of
this fact is possible by online programme www.physics.uq.edu.au/gqc. This programme also
enables one to explicitly construct CNOT operator from unitary 2 × 2 matrices and from⎛⎜⎜⎝

0.6i 0.4i −0.6 − 0.2i 0.4i
0.4i −0.6i 0.4i −0.6 + 0.2i

−0.6 − 0.2i 0.4i 0.6i 0.4i
0.4i −0.6 + 0.2i 0.4i −0.6i

⎞⎟⎟⎠ ,

which is similar to M .

2. MULTIDIMENSIONAL SYSTEMS AND MODELS

The model of quantum computation introduced in the ˇrst section may be called one-
dimensional since the base of the bundle is a one-dimensional complex manifold. In this
section we give a multidimensional generalization of the constructions given above. Here
we remark that the multidimensionality of base immediately gives rise to the problem of
integrability of the system type (2), where the function f is now a function depending on the
vector z = (z1, . . . , zp) with values in a vector space or in a Lie algebra.

An example of such a generalization is the KnizhnikÄZamolodchikov equation in confor-
mal ˇeld theory. These system of equations is a differential equation for n-point correla-
tion function ψ(z1, . . . , zn) of conformal ˇeld theory for KacÄMoody algebra Ĝ. The points
z1, . . . , zn are distinct points on the complex line, and the correlation function takes values in
an n-fold tensor product V1 ⊗ . . . ⊗ Vn of representations of a ˇnite-dimensional simple Lie
algebra G. The system of equations has the form

(c + h∨)
dψ

dzi
=

⎛⎝ n∑
j=1,j �=i

Ωij

zi − zj

⎞⎠ψ, i = 1, . . . , n, (3)
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where Ω is the symmetric Casimir tensor Ω =
∑

xi ⊗ xi ∈ G ⊗ G corresponding to the

invariant scalar product on G and Ωij denotes the action of Ω on the ith and jth slot of the

n-fold tensor ψ. The number h∨ is the dual Coxeter number of Ĝ and the complex number
c is called the central charge.

The KnizhnikÄZamolodchikov equation deˇnes a connection ω =
∑

Ωijd log (zi − zj)

with logarithmic singularity along the divisor D =
n
∪

i=1
{zi − zj = 0} of the vector bundle on

the Xn = Cn \ D with ˇbre V1 ⊗ . . . ⊗ Vn. The system (3) is integrable and is invariant
for the G-action on ψ. Hence, it deˇnes a monodromy representation of the fundamental
group Bn = π1(Cn \ D, z0). This monodromy representation takes values in the space of
G-intertwiners between tensor products of G-modules (see [6]).

In [7] the integrable models of quantum mechanics are classiˇed which are invariant under
the action of a Weyl group with certain assumptions. For the case of BN , N � 3 the generic
model of the family of integrable quantum systems, which is called the CalogeroÄMoserÄ
Sutherland system, coincides with the BCN Inozemtsev model. The eigenvalue problem for
the Hamiltonian of the BC1 Inozemtsev model is transformed to the Heun equation with
full parameters [8]. By deˇnition the Heun equation is a second-order Fuchsian system
differential equation with four regular singular points. More precisely, the Hamiltonian of the
BC1 Inozemtsev model is given by

H := − d2

dx2
+

3∑
i=0

li(li + 1)℘(x + ωi), (4)

where ℘(x) is the Weierstrass ℘ function with periods (2ω1, 2ω3), ω0 = 0, ω2 = −(ω1 +ω3),
and li (i = 0, 1, 2, 3) are coupling constants. Let f(x) be an eigenfunction of H with
eigenvalue E, i.e.,

(H − E)f(x) =

(
− d2

dx2
+

3∑
i=0

li(li + 1)℘(x + ωi) − E

)
f(x) = 0. (5)

This equation can be transformed to the Heun equation (see [8]):((
d

dw

)2

+
(

γ

w
+

δ

w − 1
+

ε

w − t

)
d

dw
+

αβw − q

w(w − 1)(w − t)

)
g(w) = 0,

with the condition α + β + 1 = γ + δ + ε.
Conversely, if a Fuchsian differential equation with four regular singularities is given, we

can transform it into equation (5) with suitable values of the exponents of the singular points.
Thus, the relationship between the BC1 Inozemtsev model and the Heun equation is very
explicit.

It is known that system of quantum particles without re
ection described by scattering
matrix S(u), where u is the angle between the trajectories of particles, satisˇes the YangÄ
Baxter type equation

S(u)S(u + v)S(v) = S(v)S(u + v)S(u).

The symmetry of that equation is characterized by the permutation group Sn. If in addition
we take into account re
ection, then we obtain one equation in addition. If we denote by
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K(v) the re
ection matrix of particles, then the equation have the form

K(u)S(2u + v)K(u + v)S(v) = S(v)K(u + v)S(2u + v)K(u).

The symmetry of such a system is connected Lie algebras associated with root systems. A
physically meaningful example of a system with re
ection is given by a Gaudin magnetic. The
description of Gaudin magnetic is related to solution of the above KnizhnikÄZamolodchikov
equation which is associated with a BN -type root system. The formalism for the construction
of quantum gates described above is applicable for arbitrary root systems.

REFERENCES

1. Anosov D. V., Bolibruch A. A. The RiemannÄHilbert Problem, Aspects of Mathematics. Vieweg;
Braunschweig; Wiesbaden, 1994.

2. Zanardi P., Rasetti M. Holonomic Quantum Computation // Phys. Lett. A. 1999. V. 264. P. 94.

3. Giorgadze G. Monodromic Approach to Quantum Computing // Intern. J. Mod. Phys. B. 2002.
V. 16, No. 30. P. 4593Ä4605.

4. Giorgadze G., Khimshiashvili G. On Schréodinger Equations of Okubo Type // J. Dyn. Cont. Syst.
2004. V. 10, No. 2. P. 171Ä186.

5. Brylinski J. L., Brylinski R. Universal Quantum Gates // Mathematics of Quantum Computation.
Boca Raton, Florida: Chapman & Hall/CRC Press, 2002.

6. Giorgadze G. Regular Systems on Riemann Surfaces // J. Math. Sci. 2003. V. 118(5). P. 5347Ä5399.

7. Oshima T., Sekiguchi H. Commuting Families of Differential Operators Invariant under the Action
of a Weyl Group // J. Math. Sci. Univ. Tokyo. 1995. V. 2. P. 1Ä75.

8. Takemura K. The Heun Equation and the CalogeroÄMoserÄSutherland System I: The Bethe Ansatz
Method // Commun. Math. Phys. 2003. V. 235. P. 467Ä494.


