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The mixed and entanglement states have been analyzed in the Schréodinger experiment. It is known
that in an open system the ®Schréodinger cat¯ paradox is explained by the decoherence phenomenon,
but in a closed system it is explained by the EverettÄWheeler many-world interpretation of quantum
mechanics. The quantum real world can be presented as a complex multispatial geometric ˇgure and
the classical world is one of the faces of this ˇgure. In this paper it is shown that this ˇgure is the
simplex that is well known in the functional analysis. Such an interpretation of quantum mechanics
enables one to obtain the nonuniform wave equation, and Schréodinger equation is the uniform equation
of this one. Perhaps this equation is the equation of subquantum world about which Einstein has
written.
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1. SUPERPOSITION IN QUANTUM MECHANICS

It is known that by using imagination experiment ®Schréodinger cat¯ [1] it is proved that
the superposition of two microstates (atom decayed and atom didn't decay) transforms to the
superposition of two macrostates (cat is alive and cat is dead). In the open system this paradox
is solved by the ®decoherence¯ [2]. In this case the entanglement state C = A1B2 + A2B1,
where C is the state of all the system (cat and atom), A is the state of cat (A1 is alive,
A2 is dead cat), B is the state of atom (B1 is normal and B2 is decay atom), becomes
the mixed state C = A1B1 + A2B2. This transform (from entanglement to mixed state) is
result of decoherence; i.e., decoupling of wave functions of observer and surrounding world
takes place. It is clear that in mixed state the probability theory can be used. However,
in the entanglement state the probability theory cannot be used because how one can say
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about the cat or atom state if cat is alive and dead or atom is normal and decays at the
same time. In the closed system the ®Schréodinger cat¯ paradox is solved by the theory in
which the consciousness is included. One of such theories is EverettÄWheeler many-world
interpretation of quantum mechanics of [3, 4]. Œ. B.Menskii [5] has represented the quantum
world symbolically as some complex multispatial ˇgure and what we call ®a classical reality¯
is only one of the projections of this ˇgure. In this scheme the quantum world is objective
and real because it does not depend on consciousness of the observer. In this case the system
is closed; i.e., our consciousness is inside volumetric ˇgure. The objective real world exists
in the form of the parallel worlds, each of which is not realer than the rest. In scheme
the classical world is illusion because it depends on consciousness of the observer. In this
case the system is open; i.e., our consciousness is outside volumetric ˇgure. Being outside
the volumetric ˇgure, our consciousness is interacting with the surrounding world and in
consequence the decoherence takes place. The picture of the world seen by us is the result
of the coupling of wave functions of our consciousness and the surrounding world [6]. We
always see only one of the parallel worlds, but other worlds do not cease to exist. Therefore,
the classical world is only one of many variants and it arises in our consciousness. From the
beginning of existence of the quantum mechanics the famous scientists Pauli [7], Wigner [8],
Schréodinger [1] said about the necessity of inclusion of the observer's consciousness in the
quantum theory of measurements.

Simplex. From the functional analysis [9] it is known that the sequence of points {xn+1}
are in general provisions when these points are not in (n−1)-dimensional space. If these points
are connected with each other, they form n-dimensional simplex. For example, one point Å
zero-dimensional simplex, the piece Å one-dimensional one, the triangle Å two-dimensional
one, the tetrahedral Å three-dimensional simplex, etc. It is known that if x1, x2, . . . , xn

points are in the general provisions, any (k + 1) points of them, where k < n, are also in the
general provisions and form k-dimensional simplex named k-dimensional face of the given
simplex. The number of k-dimensional faces of n-dimensional simplex is calculated by the

combinatory formula CK
n =

n!
K! (n − K)!

. For example, the three-dimensional simplex Å the

tetrahedral Å has 4 two-dimensional faces (triangles), 6 one-dimensional faces (pieces) and
4 zero-dimensional faces (points). In total the sum of the faces equals 14. Let us consider
the four-dimensional simplex. Here the number of the points are 5. All of them should
not be located in the three-dimensional space. It is impossible to imagine such a ˇgure.
This four-dimensional simplex has 30 faces: 5 three-dimensional faces (tetrahedron), 10 two-
dimensional faces (triangles), 10 one-dimensional faces (pieces) and 5 zero-dimensional faces
(points). Thus, the simplex formed from more than four points cannot be presented in our
three-dimensional space. It is the complex multispatial ˇgure. The simplex in n-dimensional
space is the minimal convex set; i.e., all points of a kind Σanxn, where Σan = 1, belong to
this simplex. From the theory of probabilities [10] it is known that the probability of event
is closely connected to random and average value. The points belonging to a simplex are the
set of all average values if we take that the tops of the simplex {xn} are the random value
and an are probabilities of xn. Thus, the physical interpretation of simplex is the following.
The simplex is minimum corps which can embrace all events. From this point of view the
consideration of a simplex is expedient.
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2. CONSTRUCTION OF THE SIMPLEX

Apparently the above-mentioned complex volumetric ˇgure is the simplex. Let us imagine
that on two-coordinate plane x0y, on an axis x the number of dead ®Schréodinger cats¯ and
on an axis y the number of alive cats is marked. Let us suppose in experiment with 100
®Schréodinger cats¯ 80 cats are alive and 20 cats are dead. There may be different numbers
of alive and dead cats from the total number of all cats. But we consider numbers 100, 80,
20. In this case the probabilities are approximately equal to 0.8 (alive cat) and 0.2 (dead cat).
The points 20 and 80 are two tops of the simplex. In another case or at another moment of
time there are 60 alive cats and 40 dead cats (100 ®Schréodinger cats¯ are always considered).
We put these points in another system of coordinates x10y1 in three-dimensional space. If
we connect given four points, then we obtain three-dimensional simplex Å tetrahedral. If we
consider a lot of points, we obtain the complex volumetric ˇgure Å n-dimensional simplex.
Tetrahedral is the ˇnal simplex that we can represent in our three-dimensional space. The
simplex of higher order has faces taken from this tetrahedron. The ribs of the tetrahedral
indicate various probabilities. For example, the rib linking the points of 80 alive cats and
40 dead cats points to 80/120 = 2/3 of probability of the case that cat is alive. In the
case of 60 alive and 20 dead cats the rib of the simplex shows the probability that is equal
to 60/80 = 3/4 and so forth. The rib linking the points of 20 dead and 40 dead cats and
the rib linking the points of 80 alive and 60 alive cats point out the probability that equals
1. Let us consider the faces of the simplex. In the case of alive cat on one of them the
probability changes from 2/3 to 0.8; on another face Å from 3/4 to 0.6; on the third Å
from 2/3 up to 0.6; on the fourth Å from 3/4 to 0.8, etc. The simplex constructed by us
differs from the simplex discussed above in Sec. 1 (let us discriminate between simplex and
constructed simplex). The tops of the above-mentioned simplex were random numbers of the
events that happened solely, whereas the tops of the constructed simplex are random numbers
of both the events that happened (dead cat) and those that did not happen (alive cat) (the
total number of viewed events is constant). It is obvious that the simplex is the face of the
constructed simplex. One can say that the simplex is the simplex of classical world but the
constructed simplex is the simplex of real quantum world. For example, points of 20 and
40 dead cats (Fig. 1) of classical world are points realized in experiment, in our life and,
therefore, they are hard points. In the classical probability theory there is an indicator I of
one event (called elementary event) that can be 0 (event is not realized) or 1 (event occurred)
[10]. The points (20, 40) are hard because I = 1. The classical world is the world of realized
events and, therefore, the statistics of such events takes place. The quantum world differs
from the classical world. This world is the world of events which are not realized yet and it
is not known how these events will be realized. Therefore, in the quantum mechanics there
is an indicator too, but called wave function, that equals not only 0 or 1 but any value from
interval [0,1].

3. THE DIRECTING COSINES AND THE PROBABILITIES

From the quantum mechanics [11] the following is known. Let us assume that e is
the vector of statement system and vectors ek are eigenvectors (the basis). Then (ek, e) =
|ek| · |e| · cos β, where cos2 β is the part of e corresponding to ek. From the physical point of
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Fig. 1

view this means that if we measure the energy of the identical systems that are in the e state,
then the part of the number of Ek energy measurements equals cosβ (more exactly, it equals
| cosβ|). Therefore, | cosβ| is called directing cosine and it is connected with the probability
that the system has Ek energy in the state e. It is clear that cosβ is wave function ψ of system.
It is known that for many operators cosβ is the complex number cosβ = x + iy = A eiα,
where A = const is the length of the vector cosβ, α is any real number. It is known that
wave function ψ = A eiα. One can see that ψ is determined to within constant phase factor
eiα. This ambiguity is of principle and cannot be removed by us. But in quantum mechanics
it is considered that it is immaterial because it does not in
uence any physical result. This is
true because not the wave function but the square of the wave function amplitude |ψ|2 is the
probability p of result, i.e., p = |ψ|2 = ψψ∗ = cos2 β = x2 + y2 = A2. Thus, in quantum
mechanics the angle α is not examined. Here it is possible to see the principal moments of
quantum mechanics. In quantum mechanics, since the angle α is not examined, only one state
U of physical system is considered. However, it is possible only in classical world because
there is only one state of system that was realized as a result of decoherence. In quantum
world there is Heisenberg's uncertainty principle. Therefore, it is necessary to give not only
one state U , but many states U1, U2, . . . For this purpose in quantum mechanics the linear
operator H is introduced [11] and any state of physical system is presented as Uk = HU .
Therefore, in the quantum mechanics not only one state U presented by one vector, as in
classical physics, is considered but many states U1, U2, . . . presented by spheres of different
radius. In this case not the angle α, but the length of radius (A2 = cos2 β = p) of sphere
seems interesting. In this paper the angle α and its meaning will be discussed.

4. ANGLE α IN QUANTUM MECHANICS

Using the mentioned simplex, the above can be imagined and presented as follows.
In Fig. 2 let us assume that e1 and e2 are vectors on which the states of atom (normal

and decayed) and of course of cat (alive and dead) are presented. It is signiˇcant we are not
viewing the energy value corresponding to these states (E1 is the energy of decayed atom,
E2 is the energy of normal atom). Thus, on the axes e1, e2 there are states of atom and
cat (normal and decayed, respectively). The statement of physical system and uncertainty of
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information are presented by vector e and angle α that is formed by rotation of e on the plane
e10e2, respectively (Fig. 2).

Fig. 2 Fig. 3

Note that in paper [12] the statements of physical system are pictured by unit rays. To
one state there corresponds one ray. The rotation of unit vector was considered by Y. F. Orlov
[13] and called by him ®the intention¯ of the quantum system. Thus vector e is the ray and
angle α is the measure of uncertainty. The vector e is non-eigenvector and it may be written
in the form of superposition of vectors e1 and e2, i.e., e = C1e1 + C2e2. The projections of
e on e1 and e2 axes are the numbers of decayed and normal atoms, respectively, and cosα is
the part of decayed atoms and sin α (sin α = cos (90 − α)) is part of normal atoms of total
number of all atoms. The exact information about the amounts of normal or decayed atoms
is presented on the n(e1) and n(e2) axes in Fig. 3. In this ˇgure 20 and 80 numbers are taken
from constructed simplex (Fig. 1). In Fig. 3 let us assume that e1 is a real axis and e2 is an

imaginary axis of a complex number. It is clear that probabilities are equal to p1 =
a

a + b

(cat is alive) and p2 =
b

a + b
(cat is dead). It is the main point that p1 + p2 = 1.

But it is possible to take also another measure p∗ for which the equality Σp∗ = 1 will be
held true. It is known that sin2 α + cos2 α = 1. Assume cos2 α = p∗1 and sin2 α = p∗2. Here
p∗1 and p∗2 are other measures which we will call ®the new probabilities¯. From Fig. 3 it is
clear that

p∗1 =
a2

a2 + b2
=

a

a + ib

a

a − ib
(cat is alive),

and

p∗2 =
b2

a2 + b2
=

ib

a + ib

−ib

a − ib
(cat is dead).

In quantum mechanics the wave function ψ is interpreted as follows. The square of wave
function amplitude |ψ|2 is the probability p that the particle is in state E. We suppose that in
our consideration |ψ|2 is not the probability p, but that is ®the new probability p∗¯. Thus,

|ψ|21 =
a

a + ib

a

a − ib
. Then ψ1 =

a

a + ib
= cosα e−iα and ψ∗

1 =
a

a − ib
= cosα eiα;
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|ψ|22 =
bi

a + bi

−bi

a − bi
. Then ψ2 =

bi

a + bi
= sinα e−iα and ψ∗

2 =
−bi

a − bi
= − sinα eiα.

So we suppose that in quantum mechanics the directional cosines can be presented not in

the form cosα = a+ib, but as cosα =
a

a + ib
. Taking cosα = a+ib and cos2 α = a2+b2, we

cannot see that cos2 α is the part of the total amount; on the contrary, taking cosα =
a

a + ib

we can see that cos2 α

(
cos2 α =

a2

a2 + b2

)
is the part of the total amount. So the rubs of

our simplex accordingly point to the different statement of physical system and probabilities.
In this paper the original hypothesis can seem wrong because, as some physicists consider
wrongly, in quantum mechanics states form a sphere, but not a simplex as in the present
paper. As is well known, the quantum mechanics is physics of one state, of one measure
because the statistics for this state and then, as stated above, by means of the linear operator,
the statistics of other states have been established. In quantum mechanics this one state can
be presented as sphere. Note that the state in classical physics is presented as point. In this
paper it has been shown that many states of physical system after action of the operator form
simplex. Of course, it will be better to consider the simplex with unit rib inside unit sphere.
Of most importance for us are the angles of inclination of ribs of the simplex.

5. THE SCHRéODINGER EQUATION AND NEW WAVE EQUATION

It is known that Schréodinger equation
h2

2m
Δψ − Eψ = 0 (1) (whose solution ψ =

A exp
(
− i

h
(Et − px)

)
) cannot be derived and it was obtained intuitively in order to ex-

plain the strange properties of the microscopic world. In this paper it has been shown that
Schréodinger equation has been derived by using the above-mentioned geometrical interpreta-
tion of quantum mechanics. As was shown in Sec. 3, ψ = cosα e−iα (2). Then it is easy

to derive the following equation: Δ′ψ + 4ψ = 2. Here Δ′ =
∂2

∂2α
. However, comparing

ψ = A exp
(
− i

h
(Et − px)

)
with ψ = cosα e−iα, we can write α =

Et − px

h
(3). In the

stationary case α = α(x). Then Δ =
∂2

∂α2
=

h2

p2

∂2

∂x2
. But p2 = m2v2 = 2m

mv2

2
= 2mE.

Therefore, Δ =
∂2

∂α2
=

h2

2mE

∂2

∂x2
. Thus,

h2

2mE

∂2

∂x2
ψ + 4ψ = 2 or

h2

2m
Δψ + 4Eψ = 2

(4). In order to solve this nonuniform differential equation, we should solve the corre-

sponding uniform equation
h2

2m
Δψ + 4Eψ = 0 (5), which is Schréodinger equation (Eq. (1)),

if the factor 4 substitutes for −1. From the theory of differential equations it is known
that the general solution of Eq. (4) is equal to the solution of Eq. (5) plus one partial
solution of Eq. (4) which, taking into account the expression (3), is in the given case

cos α e−iα = cos
Et − px

h
exp

(
−i

Et − px

h

)
. Thus, the general solution of Eq. (4) has

the form ψ = A exp
(
−i

Et − px

h

)
+ cos

Et − px

h
exp

(
−i

Et− px

h

)
. One can see that
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this equation consists of two parts, i.e., Schréodinger equation plus uncertainty. In his works
Planck often wrote about different worlds: real world, classic world and world of physical
science [14]. One can say that if Schréodinger equation deals with the world of physical
science, then this equation deals with the real world. Most likely this equation deals with the
latent (secret) parameters of Einstein subquantum world [15, 16].
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