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We propose a new method for describing phase distributions of nonclassical states in optical systems
based on the nonnegative quantum distribution function. A comparison of the proposed method with
other known methods such as the PeggÄBarnett and operational ones is given.
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INTRODUCTION

The problem of quantum description of the phase was ˇrst considered by Dirac [1].
However, this problem has become the actual one after wide use of laser technique in optical
experiments and generation of squeezed states which reveal nonuniform phase distributions.
There were many attempts to describe phase properties of quantum states both via construction
of the phase operators and in terms of quasi-distributions, as well as in the operational
approach (see, e.g., the review [2] and references therein). All those methods show good
agreement with each other in the quasi-classical approximation, but have principal discord in
the case of apparent quantum states.

From the point of view of quantum mechanics, the root of the phase problem lies in
the correspondence rules prescribing the way to establish the corresponding operator for the
classical phase variable. It was shown that in the framework of the conventional quantum
mechanics, based on the von Neumann correspondence rules, it is impossible to construct the
Hermitian phase operator as canonical conjugate to the number operator [3].

Another approach to the problem of correspondence rules was proposed by V.V.Kuryshkin
[4]. In the framework of this approach, a nonnegative quantum distribution function could be
introduced that deˇnes quantum mean values of the observables.

In this Letter, we use the nonnegative quantum distribution function of Kuryshkin to get
the corresponding phase distribution as its marginal that approximates the phase distributions
of previous approaches such as phase-difference distributions of Pegg and Barnett and of
Mandel.



Phase Representation of Quantum-Optical Systems 331

1. QUANTUM PHASE

An idea to construct a (Hermitian) phase operator being conjugated to a number operator,

[N̂ , ϕ̂] = i, (1)

is the old one in quantum mechanics and belongs to Dirac [1]. However, this problem cannot
be solved in the ordinary inˇnite Hilbert space because of the bounded spectrum of the number
operator [3]. Nevertheless, some approaches to deˇne phase operators were proposed, among
which the PeggÄBarnett [5] and Mandel [6] ones have got wide popularity. The former
approach is related to the deˇnition of the phase operator in the ˇnite (s + 1)-dimensional
Hilbert space in the form

ϕ̂θ =
s∑

m=0

θm|θm〉〈θm| , (2)

with the eigenvectors and eigenvalues

|θm〉 = 1/
√

s + 1
s∑

n=0

exp (inθm)|n〉, θm = θ0 + 2πm/(s + 1), (3)

respectively. Then, the corresponding phase distribution of the quantum state allowing the

Fock decomposition |ψ〉 =
s∑

n=0

cn|n〉 turns out to be

PPB(θ) = lim
s→∞

(s + 1)/(2π)|〈θm|ψ〉|2 = (2π)−1

[
1 + 2

∑
n>k

cnck cos ((n − k)θ)

]
. (4)

This allows one to generalize the approach for two-mode states of the form

|ψ〉 =
∑

n1,n2

cn1,n2 |n1〉|n2〉

to become

PPB(θ1, θ2) = (2π)−2

∣∣∣∣∣
∑

n1,n2

cn1,n2 exp [−i(n1θ1 + n2θ2)]

∣∣∣∣∣
2

, (5)

which leads to the deˇnition of the phase-difference distribution

PPB(θ−) =
∫

PPB(θ1, θ1 + θ−)dθ1 =

= (2π)−1
∑

n1,n2,n3

c∗n1,n2
cn1,n1+n2−n3 exp [−i(n3 − n1)], (6)

which is usually implied in the phase-sensitive experiments.
The latter (operational) phase approach is based on analogy with classical optics for the

deˇnition of sine and cosine of phase difference of input modes in the eight-port scheme,
when the corresponding phase operators take the form

ĈM = N̂−1(n̂4 − n̂3), ŜM = N̂−1(n̂6 − n̂5) (7)
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with the normalizing factor N = [(n̂4 − n̂3)2 + (n̂6 − n̂5)2]1/2, where n̂i is the number
operator in the ith port.

In addition to the operator approach, there were attempts to obtain quantum phase distri-
butions as marginals of quasi-distribution functions, such as the Husimi Q function [7] and
Wigner function [8]. In view of the fact that quasi-distributions have no intrinsic proper-
ties of genuine distributions, these phase distributions fail to describe phase properties of all
nonclassical states.

Fig. 1. Mandel's phase distribution (solid line) and the PeggÄBarnett one (6) (dashed line) together
with the experimental bar chart of the phase difference between two coherent states |α1|2 = 0.047 and

|α1|2 = 0.076

In quasi-classical limit, all these phase approaches come to an agreement with each other.
However, for low-intensity quantum states there appear fundamental differences between
them. Thus, L. Mandel [9] demonstrated the big discrepancy in the PeggÄBarnett phase-
difference distribution compared with the distribution obtained in the operational approach
for two weak coherent states (see Fig. 1), which apparently indicates the very problem of
the phase in quantum mechanics. In the next section, we will show how one can treat the
problem of the phase deˇnition in the framework of another approach to the corresponding
rules in the quantum theory.

2. NONNEGATIVE DISTRIBUTION FUNCTION

One of consequences of realization of new correspondence rules proposed by Kuryshkin
[4] was the introduction of the nonnegative distribution function in the phase space

FK(q, p) = (2π)−1
∑

k

∣∣∣∣
∫

φ∗
k(q − ξ) eiξpψ(ξ)dξ

∣∣∣∣
2

, (8)
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so that a quantum mean value for the state ψ of any physical observable A(q, p) is represented
as a function of position and momentum to be calculated as

〈A〉 =
∫

A(q, p)FK(q, p)dqdp. (9)

Here the functions φk obey the relation∑
k

∫
|φk(q)|2dq = 1 (10)

to ensure the normalization condition∫
FK(q, p)dqdp = 1. (11)

The functions φk are not set by the quantum state, but may have a meaning of window
functions [10].

In the phase space, instead of the Cartesian coordinates, position q and momentum p, one
can introduce the polar ones, radius r and phase θ, by the relations q = r cos θ, p = r sin θ.
These polar coordinates, r and θ, correspond to the intensity and phase variables. Therefore,
the nonnegative distribution (8) can be used for the deˇnition of the phase distribution of
the quantum state as the marginal distribution in the polar coordinates when the radius is
integrated over

PK(θ) =

∞∫
0

FK(r cos θ, r sin θ)rdr. (12)

It means that a quantum average of any function A(θ) of phase variable is given by

〈A〉 =

π∫
−π

A(θ)PK(θ)dθ. (13)

In the case of two modes, the nonnegative quantum distribution in the state ψ(q1, q2) takes
the form

FK(q1, p1; q2, p2) =

= (2π)−2
∑

k

∣∣∣∣
∫

φ∗
k(q1 − ξ1, q2 − ξ2) exp [−i(ξ1p1 + ξ2p2)]ψ(ξ1, ξ2)dξ1dξ2

∣∣∣∣
2

(14)

with the window functions satisfying the condition

∑
k

∫
|φk(q1, q2)|2dq1dq2 = 1. (15)

It is straightforward to generalize the deˇnition of the phase distribution in the two-mode case
when the phase-difference distribution is worth to be determined:

PK(θ−) =
∫

FK(r1, θ1; r2, θ1 + θ−)r1r2dr1dr2dθ1, (16)



334 Chizhov A. V. et al.

Fig. 2. Phase distributions (16) imposed upon the plot of Fig. 1 for: 1 Å β1 = 0.55, ε1 = 1, β2 = 0.55,
ε2 = 1; 2 Å β1 = 0.55, ε1 = 5, β2 = 0.55, ε2 = 5; 3 Å β1 = 0.10, ε1 = 4, β2 = 0, ε2 = 4;

4 Å β1 = 0, ε1 = 5, β2 = 0, ε2 = 5

where the corresponding change of variables is done in the nonnegative quantum distribution
function, FK(q1, p1; q2, p2) → FK(r1, θ1; r2, θ2).

This approach to the phase problem can serve to a certain extent to approximate phase
distributions discussed in Sec. 1 by means of the choice of the window functions φk. To
demonstrate it, let us consider the problem of Mandel's experiment concerning the dissimilar-
ity in the phase-difference distributions between the experimental data and the PeggÄBarnett
one. For this, we consider the input quantum state as the two-mode coherent state |α1, α2〉:

Ψ(q1, q2) = ψcoh
1 (q1)ψcoh

2 (q2), ψcoh
i (q) = (2π)−1/4 exp [−(q −

√
2αi)2] (i = 1, 2) (17)

and choose the window function in the form

Φ(q1, q2) = φ1(q1)φ2(q2), φi(q) = (2πεi)−1/4 exp [−(q −
√

2βi)2/εi] (i = 1, 2), (18)

where βi and εi are thought to be the adjustment parameters. In Fig. 2, the phase distributions
(16) are plotted for a number of sets of parameters which simulate the behavior of the Mandel
distribution as well as the PeggÄBarnett one.

CONCLUSIONS

In the Letter, we have shown how the phase distributions could be deˇned via the non-
negative quantum distribution function of the system. The proposed method was applied to
the case of two-mode states for describing the phase-difference distribution.
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Our distribution by appropriate choice of window functions was shown to approximate
Mandel's operational distribution and the PeggÄBarnett one.
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