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BOSEÄEINSTEIN CORRELATIONS OF LIGHT HADRONS
AND THE STOCHASTIC SCALE OF PARTICLE
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Based on quantum ˇeld theory at ˇnite temperature, we obtained new results for two-particle BoseÄ
Einstein correlation (BEC) function C2(Q) in case of light hadrons. The important parameters of BEC
function related to the size of emitting source, mean multiplicity, stochastic forces range and correlation
radius with the particle energy and the mass dependence, and the temperature of the source are obtained
in analytical form for the ˇrst time. Not only is the correlation between identical bosons explored but
also the off-correlation between non-identical particles is proposed.
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INTRODUCTION

To explore the correlations of BoseÄEinstein type (BEC), one needs to use the properties
of a particle detector, e.g., its tracking system to study the hadron processes in some energy
region. Such a study will be done soon in the next papers.

This paper describes an attempt to address the problems of BEC within the theoretical
aspects prior to analysis of the real data.

Over the past few decades, a considerable number of studies have been done on the
phenomena of multiparticle correlations observed in high-energy particle collisions (see the
review in [1]). It is well understood that the studies of correlations between produced particles,
the effects of coherence and chaoticity, an estimation of particle emitting source size and the
temperature play an important role in this branch of high-energy physics.

By studying the BoseÄEinstein correlations of identical particles (e.g., like-sign charged
particles of the same sort) or even off-correlations with respect to different charged bosons,
it is possible to predict and even experimentally determine the time and spatial region over
which particles do not have the interactions. Such a surface is called decoupling one. In fact,
for an evolving system such as, e.g., pp̄ collisions, it is not really a surface, since at each
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time there is a spread out surface due to 
uctuations in the ˇnal interactions, and the shape of
this surface evolves even in time. The particle source is not approximately constant because
of energy-momentum conservation constraint.

More than half a century ago Hanbury-Brown and Twiss [2] used BEC between photons
to measure the size of distant stars. In the papers [3Ä10], the master equations for evolution
of thermodynamic system created at the ˇnal state of the (very) high multiplicity process were
established. The equations have the form of the ˇeld operator evolution equation (Langevin-
like [11]) that allows one to gain the basic features of the emitting source space-time structure.
In particular, it has been conjectured and further conˇrmed that the BEC is strongly affected
by nonclassical off-shell effect.

The shapes of BEC function were experimentally established in the LEP experiments
ALEPH [12], DELPHI [13] and OPAL [14], and by ZEUS collaboration at HERA [15], which
also indicated a dependence of the measured so-called correlation radius on the hadron (π, K)
mass. The results for π±π± and π±π∓ correlations with pp̄ collisions at

√
s = 1.8 TeV were

published by E735 collaboration in [16].
One of the aims of this paper is to carry out the extended model of BEC in the framework

of quantum ˇeld theory at ˇnite temperature (QFTβ) approach to be applied later to real
experimental data on two-particle BEC. It is known that the effective temperature of the
vacuum or the ground state or even the thermalized state of particles distorted by external
forces is occurring in models quantized in external ˇelds. One of the main parameters of
the model considered here is the temperature of the particle source under the random source
operator in
uence.

Among the results obtained in this paper we mention a theoretical estimate accessible to
experimental measurements of two-particle BEC and proof that quantum-statistical evolution
of particleÄantiparticle correlations is not an artifact of the standard formalism but quite a
general property of particle physics. The effect (called surprising one) for non-identical
particles correlations was predicted already in [17].

1. TWO-PARTICLE BEC

A pair of bosons with the mass m produced incoherently (in ideal nondisturbed, non-
interacting cases) from an extended source will have an enhanced probability C2(p1, p2) =
N12(p1, p2)/[N1(p1)N2(p2)] to be measured (in terms of differential cross section σ), where

N12(p1, p2) =
1
σ

d2σ

dΩ1 dΩ2
(1)

to be found close in 4-momentum space �4 when detected simultaneously, as compared to
the case where they are detected separately with

Ni(pi) =
1
σ

dσ

dΩi
, dΩi =

d3pi

(2π)3 2Epi

, Epi =
√

p2
i + m2, i = 1, 2. (2)

The following relation can be used to retrieve the BEC function C2(Q):

Cij
2 (Q) =

N ij(Q)
N ref(Q)

, i, j = +, −, 0, (3)
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where N ij(Q) in general case refer to the numbers N±±(Q) for like-sign charged particles
(e.g., π±π±, K±K±, . . .); N±∓(Q) Å for different charged bosons (e.g., π±π∓, K±K∓, . . .)
or even for neutral charged particles N00(Q) (e.g., π0π0, K0K0, . . .) with

Q =
√
−(p1 − p2)μ(p1 − p2)μ =

√
M2 − 4 m2. (4)

In formulas (3) and (4) N ref is the number of pairs without BEC and pμi(i = 1, 2) are

four-momenta of produced particles, M =
√

(p1 + p2)2μ is the invariant mass of the pair of

bosons. For reference sample, N ref(Q), the like-sign pairs from different events can be used.
It is commonly assumed that the maximum of two-particle BEC function Cii

2 (Q) is 2 for
p1 = p2 if no any distortion and ˇnal-state interactions are taken into account.

In general, the shape of BEC C2(Q) function is model-dependent. The most simple form
of Goldhaber-like parameterization for C2(Q) [18, 19] has been used for data ˇtting:

C2(Q) = C0(1 + λ e−Q2R2
)(1 + εQ), (5)

where C0 is the normalization factor; λ is the so-called chaoticity strength factor, meaning
λ = 1 for fully chaotic and λ = 0 for fully coherent sources; the parameter R is interpreted
as a radius of the particle source, often called the ®correlation radius¯, and assumed to be
spherical in this parameterization. The linear term in (5) is often supposed to be accounted
for long-range correlations outside the region of BEC. However, the origin of these long-
range correlations, as well as the value of ε, is unknown yet. Note that distribution of, e.g.,
pions and kaons can be far from isotropic, usually concentrated in narrow jets, and further
complicated by the fact that the light particles with masses less than 1 GeV often come from
decays of long-lived heavier resonances and also are under the random chaotic interactions
caused by other ˇelds in the thermal bath. In the parameterization (5) all of these problems
are embedded in the random chaoticity parameter λ.

We obtained the C2(Q) function within QFTβ approach [3Ä7] in the form

C2(Q) = ξ(N)

[
1 +

2α

(1 + α)2

√
Ω̃(Q) +

1
(1 + α)2

Ω̃(Q)

]
F (Q, Δx), (6)

where ξ(N) depends on the multiplicity N as

ξ(N) =
〈N(N − 1)〉

〈N〉2 . (7)

The consequence of Bogolyubov's principle of weakening of correlations at large distances [20]
is given by the function F (Q, Δx) of weakening of correlations at large spread of relative
position Δx:

F (Q, Δx) =
f(Q, Δx)
f(p1)f(p2)

= 1 + rf Q + . . . (8)

normalized as F (Q, Δx = ∞) = 1. Here, f(Q, Δx) is the two-particle distribution function
with Δx, while f(pi) are one-particle probability functions with i = 1, 2; rf is a measure of
weakening of correlations with Δx: rf → 0 as Δx → ∞.
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The important parameter α in (6) summarizes our knowledge of other than space-time
characteristics of the particle emitting source.

The Ω̃(Q) in (6) has the following structure in momentum space:

Ω̃(Q) = Ω(Q)γ(n), (9)

where
Ω(Q) = exp (−Δp�) = exp [−(p1 − p2)μ �μν (p1 − p2)ν ] (10)

is the smearing smooth dimensionless generalized function, �μν is the (nonlocal) structure
tensor of the space-time size (BEC formation domain), and it deˇnes the spherically similar
domain of emitted (produced) particles.

The function γ(n) in (9) re
ects the quantum features of BEC pattern and is deˇned as

γ(n) =
n2(ω̄)

n(ω) n(ω′)
, n(ω) ≡ n(ω, β) =

1
e(ω−μ)β − 1

, ω̄ =
ω + ω′

2
, (11)

where n(ω, β) is the mean value of quantum numbers for BE statistics particles with the
energy ω and the chemical potential μ in the thermal bath with statistical equilibrium at the

temperature T = 1/β. The following condition
∑

f

nf (ω, β) = N is evident, where the

discrete index f re
ects the one-particle state f .
Note that it has been commonly assumed for a long time that there are no correlation effects

among non-identical particles (e.g., among different charged particles). This assumption is
often used in normalizing the experimental data on Cii

2 with respect to Cij
2 . In the absence

of interference or correlation effects between, e.g., π+ and π− mesons it is supposed that
C+−

2 = 1.
In terms of time-like R0, longitudinal RL and transverse RT components of the space-time

size Rμ, the distribution Δij
p� looks like (i, j = +, −, 0)

Δij
p� → Δij

pR = (Δp0)2R2
0 + (ΔpL)2R2

L + (ΔpT )2R2
T . (12)

Seeking for simplicity, one has (RL = RT = R)

Δii
pR = (p0

1 − p0
2)

2R2
0 + (p1 − p2)2R2 (13)

for like-sign charged bosons, while

Δij
pR = (p0

1 + p0
2)

2R2
0 + (p1 + p2)2R2 (14)

for different charged particles.
Obviously, the BEC effect with Ωij = exp (−Δij

pR) is smaller than that deˇned by

Ωii = exp (−Δii
pR). The distribution Ωij gives rise to an off-correlation pattern between

different charged particles. The evidence of Cij
2 correlation represents a quantum-statistical

correlation between a particle and an antiparticle. Since we did not follow special assumptions
on the quantum operator level for C2 from the initial stage, it may correspond to a physically
real and observable effect. This pattern may lead to a new squeezing state of correlation
region. We obtain that within the QFTβ the BEC is more generally sensitive to particleÄ
antiparticle correlations than it would be expected from the two-particle (symmetrized) wave
function which never leads to such correlations.
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2. GREEN FUNCTION

In this paper, we would like to focus on the role of the particle mass, which in
uences the
correlations between particles. To explore this problem, one must derive the memory history
of evolution of particles produced in high-energy collisions using the general properties of
QFT at ˇnite temperature.

For deˇnite calculations we consider the thermal complex scalar ˇeld Φ(x) that corre-
sponds to π± mesons with the standard deˇnition of the Fourier transformed propagator
F [G̃(p)]:

F [G̃(p)] = G(x − y) = Tr {T [Φ(x)Φ(y)]ρβ} , (15)

with ρβ = e−βH/Tr e−βH being the density matrix of a local system in equilibrium at
temperature T = β−1 under the Hamiltonian H .

We consider the interaction of Φ(x) with the external scalar ˇeld given by the potential U .
In contrast to an electromagnetic ˇeld, this potential is a scalar one, but it is not a component
of the four-vector. The Lagrangian density can be written as

L(x) = ∂μΦ�(x)∂μΦ(x) − (m2 + U)Φ�(x)Φ(x)

and the equation of motion is

(∇2 + m2)Φ(x) = −J(x), (16)

where J(x) = UΦ(x) is the source density operator. A simple model like this allows one to
investigate the origin of the unstable state of the thermalized equilibrium in a nonhomogeneous
external ˇeld under the in
uence of source density operator J(x). For example, the source
can be considered as δ-like generalized function J(x) = μ̃ ρ(x, ε)Φ(x) in which ρ(x, ε) is a
δ-like succession giving the δ function as ε → 0 (where μ̃ is some massive parameter). This
model is useful because the δ-like potential U(x) provides the model conditions for restricting
the particle emission domain (or the deconˇnement region). We suggest the following form:

J(x) = −Σ(i∂μ)Φ(x) + JR(x),

where the source J(x) decomposes into a regular systematic motion part Σ(i∂μ)Φ(x) and
the random source JR(x). Thus, the equation of motion (16) becomes

[∇2 + m2 − Σ(i∂μ)]Φ(x) = −JR(x),

and the propagator satisˇes the following equation:

[−p2
μ + m2 − Σ̃(pμ)]G̃(pμ) = 1. (17)

The random noise is introduced with a random operator η(x) = −m−2 Σ(i∂μ), for that the
equation of motion looks like

{∇2 + m2[1 + η(x)]}Φ(x) = −JR(x). (18)

We assume that η(x) varies stochastically with the certain correlation function (CF), e.g.,
the Gaussian CF:

〈η(x) η(y)〉 = C exp (−z2μ2
ch), z = x − y,
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where C is the strength of the noise described by the distribution function exp (−z2/L2
ch)

with Lch being the noise characteristic scale. Both C and μch deˇne the in
uence of the
(Gaussian) noise on the correlations between particles that ®feel¯ an action of an environment.
The solution of Eq. (18) is

Φ(x) = −
∫

dy G(x, y)JR(y), (19)

where the Green function obeys the equation

{∇2 + m2[1 + η(x)]}G(x, y) = δ(x − y).

The ˇnal aim might have been to ˇnd the solution of Eq. (19), and then average it over
random operator η(x). Note that the operator M(x) = ∇2 +m2[1+η(x)] in the causal Green
function

G(x, y) =
1

M(x) + io
δ(x − y)

is not deˇnitely positive. However, we shall formulate another approach, where the random
force in
uence is introduced on the particle operator level.

We introduce the general non-Fock representation in the form of the operator generalized
functions

b(x) = a(x) + r(x), (20)

b+(x) = a+(x) + r+(x), (21)

where the operators a(x) and a+(x) obey the canonical commutation relations (CCR):

[a(x), a(x′)] = [a+(x), a+(x′)] = 0,

[a(x), a+(x′)] = δ(x − x′).

The operator-generalized functions r(x) and r+(x) in (20) and (21), respectively, include
random features describing the action of the external forces.

Both b+ and b obviously deˇne the CCR representation. For each function f from the
space S(�∞) of smooth decreasing functions, one can establish new operators b(f) and
b+(f):

b(f) =
∫

f(x)b(x) dx = a(f) +
∫

f(x)r(x) dx,

b+(f) =
∫

f̄(x)b+(x) dx = a+(f) +
∫

f̄(x)r+(x) dx.

The transition from the operators a(x) and a+(x) to b(x) and b+(x), obeying those commu-
tation relations as a(x) and a+(x), leads to linear canonical representations.
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3. EVOLUTION EQUATION

Referring to [3Ä7] for details, let us recapitulate here the main points of our approach
in the quantum case: the collision process produces a number of particles, out of which we
select only one (we assume for simplicity that we are dealing only with identical bosons) and
describe it by stochastic operators b(p, t) and b+(p, t), carrying the features of annihilation
and creation operators, respectively. The rest of the particles are then assumed to form a
kind of heat bath, which remains in an equilibrium characterized by a temperature T (one of
our parameters). We also allow for some external (relative to the above heat bath) in
uence
on our system. The time evolution of such a system is then assumed to be given by a
Langevin-type equation [3Ä7] for stochastic operator b(p, t)

i∂tb(p, t) = A(p, t) + F (p, t) + P (22)

(and a similar conjugate equation for b+(p, t)). We assume an asymptotic free undistorted
operator a(p, t), and that the deviation from the asymptotic free state is provided by the
random operator r(p, t): a(p, t) → b(p, t) = a(p, t) + r(p, t). This means, e.g., that the
particle density number (a physical number) 〈n(p, t)〉ph = 〈n(p)〉 + O(ε), where 〈n(p, t)〉ph

means the expectation value of a physical state, while 〈n(p)〉 denotes that of an asymptotic
state. If we ignore the deviation from the asymptotic state in equilibrium, we obtain an ideal

uid. One otherwise has to consider the dissipation term; this is why we use the Langevin
scheme to derive the evolution equation, but only on the quantum level. We derive the
evolution equation in an integral form that reveals the effects of thermalization.

Equation (22) is supposed to model all aspects of the hadronization processes (or even
deconˇnement). The combination A(p, t)+F (p, t) in the r.h.s of (22) represents the so-called
Langevin force and is therefore responsible for the internal dynamics of particle emission, as
the memory term A causes dissipation and is related to stochastic dissipative forces [3Ä7]

A(p, t) =

+∞∫
−∞

dτK(p, t − τ)b(p, τ),

with K(p, t) being the kernel operator describing the virtual transitions from one (particle)
mode to another. At any dependence of the ˇeld operator K on the time, the function A(p, t)
is deˇned by the behavior of the system at the precedent moments. The operator F (p, t)
in (22) is responsible for the action of a heat bath of absolute temperature T on a particle in
the heat bath, and under the appropriate circumstances is given by

F (p, t) =

+∞∫
−∞

dω

2π
ψ(pμ)ĉ(pμ) e−iωt.

The heat bath is represented by an ensemble of coupled oscillators, each described by the
operator ĉ(pμ) such that

[
ĉ(pμ), ĉ+(p′μ)

]
= δ4(pμ − p′μ), and is characterized by the noise

spectral function ψ(pμ). Here, the only statistical assumption is that the heat bath is canoni-
cally distributed. The oscillators are coupled to a particle, which is in turn acted upon by an
outside force. Finally, the constant term P in (22) (representing an external source term in
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the Langevin equation) denotes a possible in
uence of some external force. This force would
result, e.g., in a strong ordering of phases leading therefore to a coherence effect.

The solution of equation (22) is given in S(�4) by

b̃(pμ) =
1

ω − K̃(pμ)
[F̃ (pμ) + ρ(ωP , ε)], (23)

where ω in ρ(ω, ε) was replaced by new scale ωP = ω/P . It should be stressed that the
term containing ρ(ωP , ε) as ε → 0 yields the general solution to Eq. (22). Notice that the
distribution ρ(ωP , ε) indicates the continuous character of the spectrum, while the arbitrary
small quantity ε can be deˇned by the special physical conditions or the physical spectra.
On the other hand, this ρ(ωP , ε) can be understood as temperature-dependent succession
ρ(ω, ε) =

∫
dx exp (iω − ε)x → δ(ω), in which ε → β−1. Such a succession yields the

restriction on the β-dependent second term in the solution (23), where at small enough T
there is a narrow peak at ω = 0.

From the scattering matrix point of view, the solution (23) has the following physical
meaning: at a sufˇciently outgoing past and future, the ˇelds described by the operators
ã(pμ) are free and the initial and the ˇnal states of the dynamic system are thus characterized
by constant amplitudes. Both states, ϕ(−∞) and ϕ(+∞), are related to one another by an
operator S(r̃) that transforms state ϕ(−∞) to state ϕ(+∞) while depending on the behaviour
of r̃(pμ):

ϕ(+∞) = S(r̃)ϕ(−∞).

In accordance with this deˇnition, it is natural to identify S(r̃) as the scattering matrix in the
case of arbitrary sources that give rise to the intensity of r̃.

Based on QFT point of view, relation (20) indicates the appearance of the terms containing
nonquantum ˇelds that are characterized by the operators r̃(pμ). Hence, there are terms with r̃
in the matrix elements, and these r̃ cannot be realized via real particles. The operator function
r̃(pμ) could be considered as the limit on an average value of some quantum operator (or
even a set of operators) with an intensity that increases to inˇnity. The latter statement can
be visualized in the following mathematical representation:

r̃(pμ) =
√

α Ξ(pμ, pμ), Ξ(pμ, pμ) = 〈ã+(pμ) ã(pμ)〉β,

where α is the coherence (chaotic) function that gives the strength of the average Ξ(pμ, pμ).
In principle, interaction with the ˇelds described by r̃ is provided by the virtual particles,

the propagation process of which is given by the potentials deˇned by the r̃ operator function.
The condition Mch → 0 (or Ω0(R) ∼ 1/M4

ch → ∞) in the representation

lim
pμ→p′

μ

Ξ(pμ, p′μ) = lim
Q2→0

Ω0(R)n(ω̄, β) exp (−q2/2) → 1
M4

ch

n(ω, β),

with

Ω0(R) =
1
π2

R0 RL R2
T

means that the role of the arbitrary source characterized by the operator function r̃(pμ) in
b̃(pμ) = ã(pμ) + r̃(pμ) disappears.
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4. GREEN FUNCTION AND KERNEL OPERATOR

Let us go to the thermal ˇeld operator Φ(x) by means of the linear combination of the
frequency parts φ+(x) and φ−(x):

Φ(x) =
1√
2

[
φ+(x) + φ−(x)

]
, (24)

composed of the operators b̃(pμ) and b̃+(pμ) as the solutions of equation (22) and conjugate
to it, respectively:

φ−(x) =
∫

d3p
(2π)32(p2 + m2)1/2

b̃+(pμ) eipx,

φ+(x) =
∫

d3p
(2π)32(p2 + m2)1/2

b̃(pμ) e−ipx.

The function Φ(x) obeys the commutation relation

[Φ(x), Φ(y)]− = −iD(x)

with [21]

D(x) =
1

2 π
ε(x0)

⎡
⎣δ(x2) − m

2
√

x2
μ

Θ(x2)J1

(
m

√
x2

μ

)⎤
⎦ ,

where ε(x0) and Θ(x2) are the standard unit and the step functions, respectively, while J1(x)
is the Bessel function. On the mass shell, D(x) becomes

D(x) � 1
2 π

ε(x0)
[
δ(x2) − m2

4
Θ(x2)

]
.

One can easily ˇnd two equations of motion for the Fourier transformed operators b̃(pμ)
and b̃+(pμ) in S(�4):

[ω − K̃(pμ)]b̃(pμ) = F̃ (pμ) + ρ(ωP , ε), (25)

[ω − K̃+(pμ)]b̃+(pμ) = F̃+(pμ) + ρ�(ωP , ε), (26)

which are transformed into new equations for the frequency parts φ+(x) and φ−(x) of the
ˇeld operator Φ(x) (24):

i∂0φ
+(x) +

∫
�4

K(x − y)φ+(y)dy = f(x), (27)

−i∂0φ
−(x) +

∫
�4

K+(x − y)φ−(y)dy = f+(x), (28)

where

f(x) =
∫

d3p
(2π)3 (p2 + m2)1/2

[F̃ (p) + ρ(ωP , ε)] e−ipx
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and

f+(x) =
∫

d3p
(2π)3 (p2 + m2)1/2

[F̃+(p) + ρ�(ωP , ε)] eipx.

Here, the ˇeld components φ+(x) and φ−(x) are under the effect of the nonlocal form
factors K(x − y) and K+(x − y), respectively. In general, these form factors can admit the
description of locality for nonlocal interactions.

At this stage, it must be stressed that we have new generalized evolution Eqs. (27) and
(28), which retain the general features of the propagating and interacting of the quantum ˇelds
with mass m that are in the heat bath (reservoir) and are chaotically distorted by other ˇelds.
For further analysis, let us rewrite Eqs. (27) and (28) in the following form:

i∂0φ
+(x) + K(x) � φ+(x) = f(x), (29)

−i∂0φ
−(x) + K+(x) � φ−(x) = f+(x), (30)

where A(x) � B(x) is the convoluted function of the generalized functions A(x) and B(x).
Applying the direct Fourier transformation to both sides of Eqs. (29) and (30) with the
following properties of the Fourier transformation:

F [K(x) � φ+(x)] = F [K(x)]F [φ+(x)],

we get two equations
[p0 + K̃(pμ)]φ̃+(pμ) = F [f(x)], (31)

[−p0 + K̃+(pμ)]φ̃−(pμ) = F [f+(x)]. (32)

Multiplying Eqs. (31) and (32) by −p0 + K̃+(pμ) and p0 + K̃(pμ), respectively, we ˇnd

[−p0 + K̃+(pμ)][p0 + K̃(pμ)]Φ̃(pμ) = T (pμ), (33)

where
T (pμ) = [−p0 + K̃+(pμ)]F [f(x)] + [p0 + K̃(pμ)]F [f+(x)].

We are now at the stage of the main strategy: we have to identify the ˇeld Φ(x) introduced
in Eq. (15) and the ˇeld Φ(x) (24) built up of the ˇelds φ+ and φ− as the solutions of
generalized Eqs. (27) and (28). The next step is our requirement that the Green function
G̃(pμ) in Eq. (17) and the function Γ(pμ), which satisˇes Eq. (33)

[−p0 + K̃+(pμ)][p0 + K̃(pμ)]Γ̃(pμ) = 1, (34)

must be equal to each other, where the full Green function G̃(p2, g2, m2)

G̃(pμ) → G̃(p2, g2, m2) � 1 − g2 ξ(p2, m2)
m2 − p2 − iε

(35)

has the same pole structure at p2 = m2 as the free Green function [21] with g being the scalar
coupling constant and ξ is the one-loop correction of the scalar ˇeld. The dimensionless
function 1 − g2 ξ(p2, m2) is ˇnite at p2 = m2.
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We deˇne the operator kernel K̃(pμ) in (25) from the condition of the nonlocal coincidence
of the Green function G̃(pμ) in Eq. (17), and the thermodynamic function Γ̃(pμ) from (34) in
S(�4)

F [G̃(pμ) − Γ̃(pμ)] = 0.

We can easily derive the kernel operator K̃(pμ) in the form

K̃2(p) =
m2 + p2 − g2ξ(p2, m2) p02

1 − g2ξ(p2, m2)
, (36)

where [21]

ξ(m2) =
1

96π2m2

(
2π√

3
− 1

)
, p2 � m2,

and

ξ(p2, m2) =
1

96πm2

(
i

√
1 − 4m2

p2
+

π√
3

)
, p2 � 4m2.

The ultraviolet behaviour at |p2| � m2 leads to

ξ(p2, m2) � −1
32π2p2

[
ln

|p2|
m2

− π√
3
− iπΘ(p2)

]
.

5. STOCHASTIC FORCES SCALE

In paper [10] it has been emphasized that two different scale parameters are in the model
that we consider here. One of them is the so-called ®correlation radius¯ R introduced in (5)
and (6) with (9) and (12), (13), (14). In fact, this R parameter gives the pure size of the
particle emission source without the external distortion and interaction coming from other
ˇelds. The other (scale) parameter is the stochastic scale Lst which carries the dependence
of the particle mass, the α-coherence degree and, what is very important, the temperature T
dependence:

Lst =

[
1

α(N) |p0 − K̃(p)|2 n̄(m, β)

]1/5

. (37)

It turns out that this scale Lst deˇnes the range of stochastic forces acting on the particles in
the emission source. This effect is given by α(N)-coherence degree which can be estimated
from the experiment within the two-particle BE correlation function C2(Q) as Q close to
zero, C2(0), at ˇxed value of mean multiplicity 〈N〉:

α(N) � 2 − C̄2(0) +
√

2 − C̄2(0)
C̄2(0) − 1

, C̄2(0) =
C2(0)
ξ(N)

. (38)

In formula (37) n̄(m, β) is the thermal relativistic particle number density:

n̄(m, β) = 3
∫

d3p
(2 π)3

n(ω, β) = 3
μ2 + m2

2 π2
T

∞∑
l=1

1
l
K2

(
l

T

√
μ2 + m2

)
, (39)
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where K2 is the modiˇed Bessel function. For deˇnite calculations we consider correlations
between charged pions. The result can be extended to heavy particles case, e.g., for charged
and neutral gauge bosons, which is essential program for the LHC. The stochastic scale Lst

tends to inˇnity in case of particles on mass shell, i.e., |p0 − K̃(p)| → 0 which enters the
Lst's denominator (37). However, Lst will be bounded due to stochastic forces acting on the
particles where

|p0 − K̃(p)|2 � Δε2p = ε2p

∣∣∣∣∣p
0

εp
− 1 − g2ξ(p2, m2)

2

(
1 − p02

ε2p

)∣∣∣∣∣
2

, εp =
√

m2 + p2

as g2ξ(p2, m2) < 1.
Within our aim to explore the correlation between charged pions, Lst has the form

Lst �

⎡
⎢⎢⎢⎢⎣

e
√

μ2+m2/T

3α(N)Δε2p (μ2 + m2)3/4

(
T

2 π

)3/2
(

1 +
15
8

T√
μ2 + m2

)
⎤
⎥⎥⎥⎥⎦

1/5

, (40)

where the condition lβ
√

m2 + μ2 > 1 for any integer l in (39) was taken into account.
The only lower temperatures will drive Lst within formula (40) even if μ = 0 and l = 1 with
the condition T < m. Note that the condition μ < m is a general restriction in the relativistic
®Bose-like gas¯, and μ = m corresponds to the BoseÄEinstein condensation.

For large enough T no dependence of the chemical potential μ is found for Lst:

Lst �
[

π2

3 ζ(3)α(N)Δε2p T 3

]1/5

, (41)

where the condition T > l
√

μ2 + m2, l = 1, 2, . . . is taken into account. The origin of
formula (41) comes from

n̄(m, β) → n̄(β) =
3 T 3

π2
ζ(3), (42)

where neither a pion mass m- nor μ-dependence occurred; ζ(3) =
∞∑

l=1

l−3 = 1.202 is the

zeta function with the argument 3. For high momentum pions (p2 � 4m2) the actual mass
dependence occurred for Lst:

Lst �

⎡
⎢⎢⎢⎢⎣

e
√

μ2+m2/T

3 α(N)m2 (μ2 + m2)3/4

(
T

2 π

)3/2
(

1 +
15
8

T√
μ2 + m2

)
⎤
⎥⎥⎥⎥⎦

1/5

(43)

at low T , and

Lst �
[

π2

3 ζ(3)α(N)m2 T 3

]1/5

(44)
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at high temperatures, if g2ξ(m2) 
 1, ξ(m2) ∼ O(0.01/m2) and (p2/4m2) 
 1 are valid
in both temperature regime cases. Formula (42) reproduces the ∼ T 3 behavior which is the
same as the thermal distribution (in terms of density) for a gas of free relativistic massless
particles. Such behavior is expected anyway in high temperature limit if the particles can be
considered as asymptotically free in that regime.

Actually, the increasing of T leads to squeezing of Lst, and Lst(T = T0) = R at some
effective temperature T0. The higher temperatures, T > T0, satisfy more squeezing effect
and at the critical temperature Tc the scale Lst(T = Tc) takes its minimal value. Obviously
Tc deˇnes the phase transition where the deconˇnement will occur. Since all the masses tend
to zero (chiral symmetry restoration) and α → 0 at T > Tc, one should expect the sharp
expansion of the region with Lst(T > Tc) → ∞. The following condition ñ(m, β)vπ = 1
provides the phase transition (transition from hadronizing phase to deconˇnement one) with
the volume vπ = (4πr3

π/3), where rπ is the pion charge radius. Actually, the temperature
of phase transition essentially depends on the charge (vector) radius of the pion which is a
fundamental quantity in hadron physics. A recent review on rπ values is presented in [22].

What do we know about the source size estimation from experiments? DELPHI and
L3 collaborations at LEP established that the correlation radius R decreases with transverse
pion mass mt as R � a + b/

√
mt for all directions in the Longitudinal Center-of-Mass

System (LCMS). ZEUS collaboration at HERA did not observe the essential difference among
the values of R parameter in π±π±, K0

sK0
s and K±K± pairs, namely Rππ = (0.666 ±

0.009(stat.)+0.022−0.033(syst.)) fm, RKsKs = (0.61±0.08(stat.)+0.07−0.08(syst.)) fm
and RK±K± = (0.57 ± 0.09(stat.) + 0.15 − 0.06(syst.)) fm, respectively. The ZEUS data
are in good agreement with the LEP for radius R. However, no evidence for

√
s dependence

of R is found. It is evident that more experimental data are appreciated. However, the
comparison of experiments is difˇcult mainly due to reference samples used and the Monte
Carlo corrections.

Finally, our theoretical results ˇrst predict the Lst in (40) and (41), and both mass- and
temperature dependences are obtained clearly. This can serve as a good approximation to
explain the LEP, Tevatron and ZEUS (HERA) experimental data. We need that the pion
energies at the colliders are sufˇcient to carry out these studies (since the Δεp dependence).
Careful simulation of their (pions) signal and background is needed. The more precisely
measured pion momentum may be of some help. Also, determination of the ˇnal state
interactions may clarify what is happening.

CONCLUSION

To summarize, we have found the time dependence of the correlation function C2(Q)
calculated in time-dependent external ˇeld provided by the operator r(p, t) and the chaotic
coherence function α(m, β). Based on this approach, we emphasize the explanation of the
dynamic origin of the coherence in BEC, the origin of the speciˇc shape of the correlation
C2(Q) functions, and ˇnding the dependence on the particle energy (and the mass) due to
coherence function α, as seen from the QFTβ . Actually, the stochastic scale Lst decreases
with the particle energy (the mass m). This has already been conˇrmed by the data of LEP,
Tevatron and HERA (ZEUS) with respect to the size of particle source.
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In the framework of QFTβ the numerical analysis of experimental data can be carried out

with a result where important parameters of C2
−−(Q) and C2

++(Q) functions are retrieved
(e.g., C0, R, λ, ε, N, α, Lst, T ).

The correlations of non-identical particles pairs can be observed and the corresponding C2

parameters are retrieved. The off-correlation effect is given by the space-time distribution (14)
containing the sum p1 + p2, and this effect is sufˇcient if the factor containing the sum
p0
1 + p0

2 in (10) is not too small. The off-correlation effect is possible if the particle energies
p0

i (i = 1, 2) are small enough.
Like, e.g., π±π± BEC, the correlations π±π∓ can also serve as tools in the determination

of parameters of the particle source. The latter correlations play a particularly important role
in the detection of random chaotic correction to BEC.

The stochastic scale Lst decreases with increasing temperatures slowly at low temperatures,
and it decreases rather abruptly when the critical temperature is approached.

We claim that the experimental measuring of R (in fm) can provide the precise estimation
of the effective temperature T0 which is the main thermal character in the particle's pair
emitter source (given by the effective dimension R) with the particle mass and its energy at
given α ˇxed by C2(Q = 0) and 〈N〉. Actually, T0 is the true temperature in the region of
multiparticle production with dimension R = Lst, because at this temperature it is exactly the
creation of two particles that occurred, and these particles obey the criterion of BEC.

We have found the squeezing of the particle source due to decreasing of the correlation
radius R in the case of opposite charged particles. The off-correlated system of non-identical
particles is less sensitive to the random force in
uence (α dependence).

The results obtained in this paper can be compared with the static correlation function
(see, e.g., [23] and the references therein relevant to heavy-ion collisions).

Finally, we should stress new features of particleÄantiparticle BEC which can emerge
from the data. It is a highly rewarding task to measure experimentally non-identical particles.

There is much to be done for C2(Q) investigation at hadron colliders. The time is ripe
for dedicated searches for new effects in C2(Q) function at hadron colliders to discover, or
rule out, in particular, the α(N) dependence.

In conclusion, the correlations of two bosons in 4-momentum space presented in this paper
offer useful and instructive complimentary viewpoints of theoretical and experimental works
in multiparticle femtoscopy and interferometry measurements at hadron colliders.
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