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THE TWO-PHOTON EXCHANGE AMPLITUDE IN ep
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In this note we give arguments in favor of the statement that the contribution of the box diagram
calculated for electronÄmuon elastic scattering can be considered an upper limit to electronÄproton
scattering. As an exact QED calculation can be performed, this statement is useful for constraining
model calculations involving the proton structure.
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The problem of the two-photon exchange amplitude (TPE) contribution to elastic electronÄ
proton scattering amplitude has been widely discussed in the past, and the main attention was
devoted to single-particle polarization effects [1]. This amplitude has in principle a complex
nature. Experimentally its real part, more exactly the real part of the interference between
one- and two-photon exchange, can be obtained from electronÄproton and positronÄproton
scattering in the same kinematical conditions. A similar information in the annihilation
channel (electronÄpositron annihilation into protonÄantiproton and in the reversal process)
can be obtained from the measurement of the forward-backward asymmetry in the angular
distribution of one of the emitted particles in the reaction center-of-mass (CMS) system.

Recently, a lot of attention was devoted to the two-photon exchange amplitude (TPE) in
electronÄproton elastic scattering as a possible solution to a discrepancy between polarized
and unpolarized measurements devoted to the determination of the proton form factors [2].
Whereas no experimental evidence has been found on the presence of TPE effects (real
part) in non-linearities of the Rosenbluth ˇt, for example [3], the imaginary part is respon-
sible for beam transverse single-spin asymmetry, which although very small, of the order
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10−5Ä10−6 (ppm), but has been experimentally measured by experimental collaborations, and
ˇrstly reported in [4].

These results triggered new theoretical work and the asymmetry at ˇrst order of pertur-
bation theory was calculated by several groups, see, for instance, [5]. Inelastic intermediate
states of the TPE amplitude give rise to contributions containing the square of large logarithm
(logarithm of the ratio of the four momentum squared to the electron mass squared). At
higher order of perturbation theory, such contributions were calculated in [6] where it was
shown that they cannot be neglected.

The contribution of the interference of the Born amplitude with the imaginary part of
TPE, which is responsible for one-spin asymmetry, is proportional to the electron mass.
Therefore, its presence does not contradict the KinoshitaÄLeeÄNauenberg theorem [7] about
cancellation of mass singularities, since the corresponding cross sections are suppressed by
the lepton mass.

The theoretical description of TPE amplitude is strongly model-dependent, as it involves
modeling of the proton and of its excited states, but it is still possible to derive rigorous results
and predict exact properties of the two-photon box: model-independent statements based
on symmetry properties of the strong and electromagnetic interaction have been suggested
in [8,9]. It has been proved that, due to C-parity conservation, the amplitude for e+ + e− →
p + p̄, taking into account the interference between one- and two-photon exchange, is an odd
function of cos θ, where θ is the angle of the emitted proton in the CMS of the reaction.

For the scattering channel, the interference between one- and two-photon exchange
amplitudes induces a kinematical term

√
(1 + ε)/(1 − ε) in the ®reduced cross section¯,

ε−1 = 1 + 2(1 + τ) tan2(θe/2), where θe is the electron scattering angle, in the lab. sys-
tem. This term violates the commonly accepted linear behavior of the reduced cross section
σred = a + bε. This property must be satisˇed by all model calculations.

A second possibility is to do an exact calculation of the box diagram, which is possible
for electronÄelectron and electronÄmuon scattering, and in the crossed channel (i.e., replacing
the proton with a lepton) [10], where the muon can be considered a structureless proton. Even
if such a calculation is not rigorous when applied to the interaction on proton, the interest
of a pure QED calculation is that the results should be considered as an upper limit for any
calculation involving protons, as it will be discussed in this work.

The discussion of TPE box diagram in ep scattering cannot be restricted to one-proton
intermediate state, but inelastic amplitudes should be consistently taken into account. Con-
cerning the real part, the contributions to the amplitude from the proton on one side and
from the inelastic intermediate states on the other side, are not gauge-invariant, if considered
separately. Only their sum is gauge-invariant: the WardÄTakahashi identities relate the vertex
function and the nucleon Green function [11]. On the contrary, for the imaginary part, these
contributions are separately gauge-invariant, as the intermediate nucleon is on shell, as well
as the external nucleons, therefore they must have comparable values.

Analyticity arguments lead to a (almost complete) compensation of elastic and inelastic
contributions in the whole amplitude. This statement is rigorous in QED [12], and has been
recently extended to electronÄhadron scattering at small scattering angles. Moreover, based
on such a statement, sum rules which relate peripheral cross section and elastic form factors
have been derived in QCD and their validity veriˇed on experimental data (see [13] and refs.
therein). Therefore, one can state that elastic and inelastic contributions are of the same order
of magnitude, which is sufˇcient for our aim here.
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Fig. 1. s-channel discontinuity of the Feynman box amplitude for eμ scattering

The notion of ®nucleon form factors (FF)¯ cannot be applied to the two-photon exchange
amplitude (TPE) since one of the nucleons is off mass shell. Nevertheless, the s-channel
imaginary part of TPE, which corresponds to a single on mass shell nucleon and on mass
shell electron in the intermediate state, can be analyzed in terms of FFs. Moreover, it provides
the gauge-invariant contribution to the imaginary part of the whole TPE. We build a simple
model, calculating the eμ box Feynman diagram with one muon (nucleon) in the intermediate
state. For the proton case, the muon mass is taken equal to the proton mass, and the proton
structure is described by form factors.

We can neglect the spin dependence and we calculate scalar four-dimensional integrals
with point-like particles (in case of eμ scattering), and including proton form factors (for
ep scattering). A complete calculation was performed in [14] where similar scalar Feynman
integrals with three and four denominators are involved.

Our aim is not to do a complete calculation of the box diagram, but to ˇnd an upper limit
of this term: in every step, one should compare the relevant integrals. The purpose of this
note is to prove that modeling of the proton by Q2 decreasing form factors leads to a smaller
contribution of the box diagram, compared to the QED case. We will prove this statement
for the imaginary part of the amplitude corresponding to the box diagram with one proton
line connecting two γpp vertexes and the validity for the relevant part of the full amplitude,
A, can be inferred through dispersion relations:

A(s, t) =
1
π

∫
ds′ ImA(s′, t)
(s′ − s − iε)

. (1)

Let us consider the cases where the target T is a proton or a muon (Fig. 1) with the following
convention for the particle four momenta:

e(p1) + T (p) → e(p′′1) + T (p′′) → e(p′1) + T (p′). (2)

The following kinematical relations hold in the center-of-mass frame:

p1 + p = p′1 + p′, q = p1 − p′1, p
′
1 + p′ = p′′1 + p′′, q1 = p1 − p′′1 , q2 = p′′1 − p′1,

Q2
1 = −q2

1 = −(p1 − p′′1)2 = 2(p)2(1 − c1),

Q2
2 = −q2

2 = −(p′′1 − p′1)
2 = 2(p)2(1 − c2),

Q2 = −q2 = −(p1 − p′′1)2 = 2(p)2(1 − c),
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where c1 = cos θ1 , c2 = cos θ2, c = cos θ, and θ1 = ̂p1p′′
1 , θ2 = ̂p′′

1p
′
1, and θ = ̂p1p′

1. The
momenta carried by the virtual photons are q1 = k and q2 = q − k.

The contribution to the Feynman amplitude corresponding to the diagram of Fig. 1 can be
written as

M =
1

(2π)2

∫ NdΓ
(Q2

1 + λ2)(Q2
2 + λ2)

, (3)

where N = F (Q2
1)F (Q2

2)(N = 1) for ep(eμ) scattering, λ is a ˇctitious photon mass and dΓ
is the phase volume of the loop intermediate state. The notation F (Q2

1)F (Q2
2) indicates the

bilinear combination of the Dirac F1 and Pauli F2 nucleon form factors.
Taking into account the fact that the intermediate particles are on shell, one can write for

the proton case:

dΓ = d4p′′1δ(p′′21 − m2)δ(p′′2 − M2)d4p′′δ4(p1 + p − p′′1 − p′′) =

=
d3p′′1
2ε′′1

d3p′′

2ε′′
δ4(p1 + p − p′′1 − p′′) =

d3p′′1
4ε′′1ε′′

δ(
√

s − ε′′1 − ε′′),

ε′′1 =
s − M2

2
√

s
, ε′′ =

s + M2

2
√

s
. (4)

Finally, one can write

dΓ =
s − M2

8s
dO′′

1 , (5)

where dO′′
1 is the solid angle of the electron in the intermediate state, which can be expressed

as a function of the angles deˇned above as

dO′′
1 =

2dQ2
1 dQ2

2√
D1Q2

0

, D1 = 2(Q2
1 +Q2

2)Q
2Q2

0−2Q2Q2
1Q

2
2− (Q2

1−Q2
2)

2Q2
0− (Q2)2Q2

0, (6)

with the relation Q2
0 = 2p2 = (s − M2)2/(2s). The positivity of the function D deˇnes the

solid angle kinematically available for the reaction.
Therefore, one can write the contributions corresponding to the ®QED¯ diagram in Fig. 1,

in case of a muon target:

Mμ =
1√
8s

∫
dQ2

1 dQ2
2√

D1(Q2
1 + λ2)(Q2

2 + λ2)
. (7)

Introducing a generalized form factor for the proton, one ˇnds for the ®QCD¯ diagram of
Fig. 1, in case of a proton target:

Mp =
1√
8s

∫
dQ2

1 dQ2
2 F (Q2

1)F (Q2
2)√

D1(Q2
1 + λ2)(Q2

2 + λ2)
. (8)

We imply that both amplitudes are similarly infrared regularized, which, for the purpose
of our paper, is equivalent to consider λ as a ˇnite quantity. Therefore, the condition
F (Q2

1)F (Q2
2) < 1 is equivalent to the statement that the value of the electronÄmuon scat-

tering amplitude can be considered an upper estimation of the amplitude for electronÄproton
scattering.
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Nucleon form factors are functions which are rapidly decreasing with Q2. The Pauli and
Dirac form factors, F1 and F2, are related to the Sachs form factors by

F1(Q2) =
τGM (Q2) + GE(Q2)

τ + 1
, F2(Q2) =

GM (Q2) − GE(Q2)
τ + 1

, τ =
Q2

4M2
, (9)

with the following normalization: F1(0) = 1, F2(0) = μp − 1 = 1.79, where μp is the
magnetic moment of the proton in units of Born magneton.

Let us consider the dipole approximation as a good approximation at least for the magnetic
proton form factor GM , although it has been shown that the electric form factor GE deviates
from the dipole form [2]. In any case, any parametrization closer to the data will give even
lower values as compared to the dipole form. In this approximation, we have

FD
1 (Q2) =

(τμp + 1)GD(Q2)
τ + 1

, FD
2 (Q2) =

(μp − 1)GD(Q2)
τ + 1

,

GD(Q2) = [1 + Q2(GeV)2/0.71]−2.

(10)

In Fig. 2 we show F1(Q2) (solid line), F2(Q2) (dashed line), which are smaller than unity
practically overall the Q2 range. The product F1(Q2

1)F1(Q2
2) is shown in Fig. 3 as a bidi-

mensional plot, and in Fig. 4, as a projection on the Q2
1 axis for Q2

2 = 0.05 GeV2 (solid line),
Q2

2 = 1.2 GeV2 (dashed line), Q2
2 = 2 GeV2 (dotted line).

Fig. 2. Form factors as a function of Q2: solid line Å F1(Q
2), dashed line Å F2(Q

2)

One can see that the condition F (Q2
1)F (Q2

2) < 1 is satisˇed, starting from very low values
of Q2. Let us stress that F1(Q2) is normalized to 1 and decreases with Q2, being therefore
smaller than unity; in the expression of the hadronic current, F2(Q2) is multiplied by qμ,
which lowers its contribution at small Q2, whereas at larger Q2 it does not compensate the
steep Q−6 behavior of this form factor, as expected from quark counting rules [16]. This is
the reason why we can replace the bilinear combination F (Q2

1)F (Q2
2) by F1(Q2

1)F1(Q2
2).
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Fig. 3. Bidimensional plot of F1(Q
2
1)F1(Q

2
2) as a function of Q2

1 and Q2
2

Fig. 4. Projection on F1(Q
2
1)F1(Q

2
2) on the Q2

1 axis for Q2
2 = 0.05 GeV2 (solid line), Q2

2 =

1.2 GeV2 (dashed line), Q2
2 = 2 GeV2 (dotted line)

Furthermore, we note that a destructive interference of the contributions of the single
proton and its excited states takes place in (1), which results in additional suppression of
ep amplitude compared to eμ. A mutual compensation of the amplitudes for ®elastic¯ proton
intermediate state with the excited hadronic states exists, and the reason lies in the supercon-
vergent character of the dispersion relation (1), where the total amplitude is implied. Indeed,
considering the amplitude for virtual Compton scattering in the complex s plane, closing the
integration contour to the right-hand singularities (which correspond to the proton interme-
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diate state (pole) and to excited hadron states (cuts)) a compensation takes place, up to the
small contribution of the left-hand cut. Details are given in [13]. Therefore, all model calcu-
lations for ep elastic scattering as [15] should result in smaller contribution of the two-photon
amplitude, as compared to QED calculations [10].

In conclusion, let us note that any (quantitative) application of our considerations to
polarization phenomena is outside the purpose of this paper. Our statements were done for
the imaginary part of the scattering amplitude, and extended to the full amplitude with the
help of dispersion relations. As far as the real amplitude of ep scattering is concerned, the
whole TPE amplitude is smaller than the contribution of the one-proton intermediate state of
the TPE amplitude, due to a compensation of elastic and inelastic states. Reasons in favor of
this cancellation were given in the literature [13]. But, even if we neglect the compensation
effects, the QED eμ amplitude dominates the relevant one-proton real ep TPE amplitude, due
to the steep falling of form factors. Our statement, about the QED dominance, is relevant to
the whole ep amplitude. This is the main conclusion of the present work.
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