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ON THE LORENTZ GROUP SO(3, 1),
GEOMETRICAL SUPERSYMMETRIC ACTION

FOR PARTICLES AND SQUARE ROOT OPERATORS
II. SQUEEZED STATES

AND RELATIVISTIC WAVE EQUATIONS
D. J. Cirilo-Lombardo1

Joint Institute for Nuclear Research, Dubna

The geometical relativistic superparticle action is analyzed from theoretical group point of view.
To this end an alternative technique of quantization, outlined by the authors in a previous work and
based on the correct interpretation of the square root Hamiltonian, is used. We show that the obtained
spectrum of physical states and the Fock construction in this previous work consist of squeezed states
with the even and odd representations with the lowest weights λ = 1/4 and λ = 3/4 corresponding to
four possible (nontrivial) fractional representations for the group decomposition of the spin structure.
The conserved currents are computed, and a new relativistic wave equation is proposed and explicitly
solved for the time-dependent case. The relation between the relativistic Schréodinger equation and the
time-dependent harmonic oscillator is analyzed and discussed.
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1. INTRODUCTION AND SUMMARY

The quantum behaviour of a relativistic particle in the superspace, as well as being a
useful tool for certain studies and applications of Quantum Field Theory (QFT), is of notable
importance in many physical contexts. Time-dependent Landau systems and the electron-
monopole system are described naturally by the Super-HeisenbergÄWeyl and OSP (1/2)
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algebras [14Ä16]. If several more or less well known physical systems are intrinsically
supersymmetric in nature, an obvious question is: Can any supersymmetric toy model give
us a good picture of not so well known physical systems? Part of the purpose of this paper is
to demonstrate the positive answer to this question showing that a relativistic particle in the
superspace can describe particles with fractionary spin for which no concrete action is known.

On the other hand, the Time-Dependent Harmonic Oscillator (TDHO) was demonstrated
to be powerful to describe systems with more complicated dynamics in closed form. From
the famous reports of Ermakov [20] and Husimi [19] we can see that if any physical problem
with a complicated or involved dynamics can be represented faithfully or ®mapped¯ to a
TDHO system, then this complicated dynamics admits a Coherent State (CS) or Squeezed
States (SS) realization. It is clearly important that the model proposed here admits a CS
and SS realization. Most notably, squeezed states have been used in the context of quantum
optics [21] and in the context of gravitational wave detection [22]. The correct choice for the
realization of the physical states, however, will depend on the symmetry group that deˇnes in
some meaning the particular physical system under study. The other part of this work will be
devoted to discussion of this point and what happens when different algebras can characterize
the same physical problem.

In a previous work [7], to which we will refer in the number of all equations here as
Part I, we considered the simple model of superparticle of Volkov and Pashnev [1] in order
to quantize it and to obtain the spectrum of physical states with the Hamiltonian remaining
in the natural square root form. In the present paper we will complete this previous work,
giving in more explicit form how the states can be faithfully represented and realized from
the geometrical and from the dynamics of the group manifold point of view. We also ˇnd
the link with the TDHO problem, and for instance, with the CS and SS representations of
the physical states obtained in [7]. The plan of this paper is as follows: Section 2 is devoted
to description of the obtained spectrum of the superparticle model under consideration in
Part I, emphasizing the relation between the group representation of the physical states and
their CS or SS realizations. In Secs. 3 and 4 the relation of the model with the relativistic
Schréodinger equation is discussed and a new relativistic wave equation is proposed. Finally
some conclusions and remarks are given in Sec. 5.

2. SQUEEZED STATE REALIZATION AND NON-COMPACT GROUPS

In Part I we showed that the wave functions which transform as linear irreducible repre-
sentation of ISO(2, 1), subgroup of ISO(3, 1) generated by operators (I.33) are

Ψ1/4(x, θ, q) =
+∞∑
k=0

f2k(x, θ)ϕ2k(q), (1)

Ψ3/4(x, θ, q) =
+∞∑
k=0

f2k+1(x, θ)ϕ2k+1(q) (2)

(analogously for the Ψ1/4 and Ψ3/4 states with contrary helicity). We can easily see that the

Hamiltonian Hcm =

√
m2 − M2 +

23/2M

|a|
[
1 − (σ0)αβ̇sβ̇sα

]
Eq. (I.28) operates over the
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states |Ψ̂〉, which enter into H as its square Φα and Φα̇. It is natural to associate, up to a
proportional factor, the spinors dα and d ·

α
with

dα → (Φ1/4)α ≡
〈
Ψ1/4

∣∣ Lα

∣∣Ψ1/4

〉
, d ·

α
→

(
Φ1/4

)
·
α
≡

〈
Ψ1/4

∣∣ L ·
α

∣∣Ψ1/4

〉
(3)

and in an analogous manner the spinors sα and s ·
α

with

sα → (Φ3/4)α ≡
〈
Ψ3/4

∣∣ Lα

∣∣Ψ3/4

〉
, s ·

α
→ (Φ3/4) ·

α
≡

〈
Ψ3/4

∣∣ L ·
α

∣∣Ψ3/4

〉
, (4)

where the new spinors Lα(L ·
α
) are deˇned as

Lα =
(

a1a1

a+
1 a+

1

)
,

(4a)

Lα̇ =
(

a2a2

a+
2 a+

2

)
.

The reason for this choice is the following: as was shown in Ref. [10], the Hilbert space
for each subgroup ISO(2, 1) ≈ SU(1, 1) [23, 24] can be decomposed as direct sum of
two independent subspaces characterized for the states of helicity λ = 1/4 and λ = 3/4,
respectively. Each subspace is composed of the even (λ = 1/4) and odd states (λ = 3/4)
given by the expressions (1), (2). These ®cat¯ states admit (after a convenient choice for the
functions f2k(x, θ) and f2k+1(x, θ)) a coherent state realization being eigenvectors not of the

ladder operator a of the HeisenbergÄWeyl algebra with the operators (I.31) Lα =
(

a1

a+
1

)
and Lα̇ =

(
a2

a+
2

)
, but of the quadratic ladder operator aa of the SU(1, 1) algebra deˇned

in general by

K+ =
1
2
a+a+; K− =

1
2
aa; K0 =

1
4
(a+a + aa+). (4b)

This means that when we are in the full Hilbert space the algebra is HeisenbergÄWeyl one

and the states |Ψ〉 =
1√
2

(∣∣Ψ1/4

〉
+

∣∣Ψ3/4

〉)
are eigenvectors of the operator a, and when we

pass to the decomposed space (by means of a suitable unitary transformation), the algebra
becomes the SU(1, 1) algebra with the quadratic ladder operators given by expression (4b).

3. RELATION WITH THE RELATIVISTIC SCHRéODINGER EQUATION:
COMPATIBILITY CONDITIONS AND PROBABILITY CURRENTS

According to formula (I.25) the new Hamiltonian operates as (the metric tensor signature
is given here by gμν = (+ −−−))√

m2 − P0P0 −
(
PiP i +

1
a
ΠαΠα − 1

a∗Πα̇Πα̇

)
|Ψ〉 = 0;
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for instance, the action of the radical operator is{[
m2 − P0P0 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Πα̇Πα̇

)]α

β

(ΨLα)

}1/2

Ψ = 0, (5)

which seems as a parabosonic supersymmetric version of the relativistic SchréodingerÄDe
Broglie equation. In the next paragraph we will see that this equation corresponds to the
family of equations given ˇrst by E. Majorana [11] and P.A.M. Dirac [3], and in its para-
bosonic version by Sudarshan, N.Mukunda and C.C. Chiang in 1981 [9].

We can see from the above expression that if we put the (super)momenta together in the
� operator, we obtain a more suitable equation in order to compute the currents as in the
FockÄKleinÄGordon case[(

� + m2
)α

β
(ΨLα)

]1/2

Ψ = 0,

(6)[(
� + m2

)α

β
(ΨLαΨ)

]1/2

=
[(

� + m2
)α

β
Φα

]1/2

= 0,

now eliminating the exponent 1/2 and taking the Hermitian conjugation to equation we have[(
� + m2

)α

β

(
Ψ†L†

αΨ†)]1/2

=
(
� + m2

)α

β
Φ†

α = 0. (7)

Following the same procedure as Dirac in Ref. [3], we multiply the expression (6) from the
left side by Φ†

α and multiply the expression (7) from the left side by Φα, integrating and
subtracting the ˇnal expressions we obtain

Φ†
α�Φβ − Φα�Φ†

β = 0. (8)

Using the relations Φ†�Φ = ∂μ

(
Φ†∂μΦ

)
− ∂μΦ†∂μΦ; Φ�Φ† = ∂μ

(
Φ∂μΦ†)− ∂μΦ∂μΦ† in

expression (56), the current for the square states Φα is

∂μ

(
Φα∂μΦ†

α − Φα†∂μΦα

)
= 0 = −∂μjμ (9)

with jμ(x) ≡ −(i)
[
Φα∂μΦ†

α − Φα†∂μΦα

]
.

If we suppose that a link between the relativistic Schréodinger equation (5) and our new
Hamiltonian H holds, the relation with the quartionic states is the following:

iΨ̇ = EΨ.

Squaring the above expression and having account as H operates over Ψ and Ψ†, we can
easily obtain

−Φ̇β = E2Φβ , Φ̇†
β = E2Φ†

β (10)

which after substitution into the explicit expression for j0(x) permits us to analyze the
positivity of this component of the current for the square states Φα

j0(x) = 2E2Φα†Φα.
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As we have obtain of from expression (10) j0(x) for the square states Φα is positive deˇnite
because the energy E appears squared.

Now in order to ˇnd the current vector for the para-Bose states Ψ we proceed analogously
as above for the states Φα but also using the consistency condition (13) arriving at

Ψ†�Ψ − Ψ�Ψ† = 0

as we expected because these square root states obey the square root operator equation and, for
instance, also obey the equation for the squared operator (the inverse is not true in general).
In fact in some references in the literature the authors do not take care in that we can pass
to the equation with the square root KleinÄGordon operator to its squared traditional version
operating on the same state but not the inverse (see e.g. Ref. [12]). The correct form to do
this is as follows: if we start with√

(−Δ + m2)Ψ = i∂tΨ, (11)

the relation with any pseudo-differential operator A is

AΨ =
√

(−Δ + m2)Ψ = i∂tΨ ⇒ AAΨ = iA∂tΨ = A
√

(−Δ + m2)Ψ =
(
−Δ + m2

)
Ψ.

This happens clearly because Ψ obeys (11). Finally the current for the quartionic states that
we were looking for is

∂μ

[(
Ψ∂μΨ†) − (

Ψ†∂μΨ
)]

= 0 = −∂μjμ (12)

with jμ(x) ≡ −i
[
Ψ∂μΨ† − Ψ†∂μΨ

]
. It is not difˇcult to see that in this case from expression

(12) the zero component of the current is not positive deˇnite one given explicitly by

j0(x) = 2EΨ†Ψ.

The compatibility condition, as usual, is given by the following expression:

[τα, τβ ]Ψ = 0, (13)

where we deˇned τβ ≡
[(

� + m2
)α

β
(ΨLα)

]1/2

. After a little algebra and using expression

(13) we arrive at [(
� + m2

)δ

α

(
� + m2

)γ

β
εδγ

]1/2

Ψ = 0. (14)

It is good to remember here that Eq. (5) describes a free particle in an N = 1 superspace and
the term of interaction appears from the supersymmetry between the bosonic and fermionic
ˇelds. The last expression shows that our Eq. (5) is absolutely compatible and consistent
because its fermionic character comes from the supersymmetric part, and, for instance, it
is not necessary to introduce any extra term in order to include spin. As is well known,
these terms (putted ®by hand¯ in equations containing second-order derivatives) destroy the
compatibility condition, leading to the impossibility of including interactions [13].
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4. RELATIVISTIC WAVE EQUATION

Following the arguments given in the precedent paragraphs, it is natural to propose the
following form for a square root of the second-order supersymmetric wave equation:{[

m2 − P0P0 −
(
PiP i +

1
a
ΠαΠα − 1

a∗Πα̇Πα̇

)]α

β

(ΨLα)

}1/2

Ψ = 0. (15)

Passing to the center of mass and rescaling the variables, we obtain the following expression:{[
|a|2 ∂2

0 +
1
4

(
∂η − ∂ξ + i ∂0(σ0)αβ̇

(
θ

β̇ − θα

))2

−

−1
4

(
∂η + ∂ξ + i ∂0(σ0)αβ̇

(
θ

β̇ − θα

))2

+ m2

]α

β

Φα

⎫⎬⎭
1/2

= 0, (16)

where (e.g., Ref. [2] for the nonsupersymmetric case)

η ≡ (θ + θ) ξ ≡ (θ − θ). (17)

Imposing the condition ∂ηΦα = 0 ⇒ Φα(ξ), the ®square¯ of the solution eigenfunction of
Eq. (15) takes the form

Φγ(t) = eA(t)+ξ	(t) Φγ(0) (18)

with �(t) = φα + χα̇ (i.e., chiral plus antichiral parts). The system of equations for A(t) and
�(t) that we are looking for is easily obtained inserting the expression (18) in Eq. (16)

|a|2 Ä + m2 = 0,

χ̈α̇ − i
ω

2
(σ0)α

α̇φα = 0,

−φ̈α + i
ω

2
(σ0)β̇

α χβ̇ = 0.

The above system can be solved giving us the following result:

A = −
(

m

|a|

)2

t2 + c1t + c2; c1, c2 ∈ C (19)

and

φα =
◦
φα

(
α eiωt/2 + β e−iωt/2

)
+

2i

ω
(σ0)β̇

α Z β̇ , (20)

χα̇ = (σ0)α
α̇

◦
φα

(
α eiωt/2 − β e−iωt/2

)
+

2i

ω
(σ0)α

α̇ Zα, (21)

where
◦
φαZα and Zβ̇ are constant spinors. The superˇeld solution for the square states that

we are looking for has the following form:

Φγ(t) = exp

(
−

(
m

|a|

)2

t2 + c1t + c2

)
eξ	(t) Φγ(0) (22)
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with

�(t) =
◦
φα

[(
α eiωt/2 + β e−iωt/2

)
− (σ0)α

α̇

(
α eiωt/2 − β e−iωt/2

)]
+

+
2i

ω

[
(σ0)β̇

αZβ̇ + (σ0)α
α̇Zα

]
(23)

and
Φγ(0) = 〈Ψ(0)|Lγ |Ψ(0)〉 (24)

which is nothing else than the mean value of Lγ between the states |Ψ〉 in the initial time,
where the subalgebra is the HeisenbergÄWeyl algebra (with generators a, a+ and (n + 1/2)).
As we have pointed out in Sec. 2, the states |Ψ〉 span all the Hilbert space and, for instance,
we cannot obtain useful information from the point of view of the topology of the group
manifold, for instance, also about the spin.

The dynamics of the square root ˇelds, in the representation that we are interested in, can
be simpliˇed considering these ˇelds as coherent states in the sense that they are eigenstates
of a2: ∣∣Ψ1/4(0, ξ, q)

〉
=

+∞∑
k=0

f2k(0, ξ) |2k〉 =
+∞∑
k=0

f2k(0, ξ)
(a†)2k√

(2k)!
|0〉,

∣∣Ψ3/4(0, ξ, q)
〉

=
+∞∑
k=0

f2k+1(0, ξ) |2k + 1〉 =
+∞∑
k=0

f2k+1(0, ξ)
(a†)2k+1√
(2k + 1)!

|0〉.

(25)

From a technical point of view these states are one-mode squeezed states constructed by the
action of the generators of the SU(1, 1) group over the vacuum. For simplicity, we will
take all normalization and fermionic dependence or possible CS fermionic realization, into
the functions f(ξ). Explicitly at t = 0∣∣Ψ1/4(0, ξ, q)

〉
= f(ξ)|α+〉,∣∣Ψ3/4(0, ξ, q)

〉
= f(ξ)|α−〉,

(26)

where |α±〉 are the CS basic states in the subspaces λ = 1/4 and λ =3/4 of the full Hilbert
space. From expression (22) and expressions (4) we obtain

Φα(t, λ) = 〈Ψλ(t)|Lα|Ψλ(t)〉 =

= exp

(
−

(
m

|a|

)2

t2 + c1t + c2

)
eξ	(t) 〈Ψλ(0)|

(
a2

(a+)2

)
α

|Ψλ(0)〉, (27)

Φα(t, λ) = exp

(
−

(
m

|a|

)2

t2 + c1t + c2

)
eξ	(t) |f(ξ)|2

(
α2

λ

α∗2
λ

)
α

, (28)

where λ label the helicity or the spanned subspace (e.g., ±). The ®square root¯ states
eigenfunctions of the square root wave operator (15) are

Ψλ = exp

(
−1

2

[(
m

|a|

)2

t2 + c1t + c2

])
exp

(
ξ�(t)

2

)
|f(ξ)|

(
α
α∗

)
λ

, (29)
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where λ = 1/4, 3/4. Notice the difference from the case in which we used the HW realization
for the states Ψ

|Ψ〉 =
f(ξ)

2
(|α+〉 + |α−〉) = f(ξ) |α〉 , (30)

where, however, the linear combination of the states |α+〉 and |α−〉 spans now the full Hilbert
space with λ in this CS basis λ = 1/2. The ®square¯ state at t = 0 is

Φα(0) = 〈Ψ(0)|Lα |Ψ(0)〉 = 〈Ψ(0)|
(

a
a+

)
α

|Ψ(0)〉 = f∗(ξ)f(ξ)
(

α
α∗

)
α

. (31)

The square state at time t is

Φγ(t) = exp

(
−

(
m

|a|

)2

t2 + c′1t + c′2

)
eξ	(t) |f(ξ)|2

(
α
α∗

)
α

. (32)

And the ®square root¯ solution becomes

Ψ(t) = exp

(
−1

2

[(
m

|a|

)2

t2 + c′1t + c′2

])
exp

(
ξ�(t)

2

)
|f(ξ)|

(
α1/2

α∗1/2

)
. (33)

We can see the change in the solutions from the choice in the representation of the Hilbert
space. The algebra (topological information of the group manifold) is ®mapped¯ over the
spinors solutions through the eigenvalues α and α∗. Notice that the constants c′1, c′2 in the
exponential functions in expressions (32) and (33) differ from the c1 and c2 in (28) and
(29), because these exponential functions of the Gaussian type come from the action of a
unitary operator over the respective CS basic states in each representation (h3 or HW). These
constants can be easily determined as functions of the frequency ω as in Ref. [19] for the
Schréodinger equation. A detailed analysis of this point and the other type of solutions will be
given elsewhere [8].

The possible algebras that contain an SU(1, 1) as subgroup that can lead or explain

the fermionic factors of type exp
(

ξ�(t)
2

)
|f(ξ)| in the solutions are 2 that are strong

candidates [22]: the supergroup OSP (2, 2) [15] and the supergroup OSP (1/2, R) [17].
In the case of the OSP (2, 2) we have bosonic and fermionic realizations and the CS and SS
can be constructed from the general procedure given by M.Nieto et al. in Refs. [14Ä16]. On
the other hand, the OSP (1/2, R) realization is more ®economic¯, the number of generators
is less than in the OSP (2, 2) case and the realization is bosonic: the K± and K0 generators
operate over the Bose states and the HW algebra given by a and a+ operates over the
fermionic part. In this case the CS and the SS that can be constructed are eigenstates of the
displacement and squeezed operators, respectively, but they cannot minimize the dispersion
of the quadratic Casimir operator, so that they are not minimum uncertainty states.

The important point to remark here is that when we describe from the mostly geometrical
grounds any physical system through SU(1, 1) CS or SS, the orbits will appear as the
intersections of curves that represent constant-energy surfaces, with one sheet of a two sheeted
hyperboloid (the curved phase space of SU(1, 1) or Lobachevsky plane) in the space of
averaged algebra generators. In the speciˇc case treated in this paper, the group containing
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the SU(1, 1) as subgroup linear and bilinear functions of the algebra generators can factorize
operators as the Hamiltonian or the Casimir operator (when averaged with respect to group
CS or SS), deˇning corresponding curves in the averaged algebra space. If we notice that the
validity of Ehrenfest's theorem for CS (SS) implies that, if the exact dynamics is conˇned to
the SU(1, 1) hyperboloid, it necessarily coincides with the variational motion, the variational
motion coming from the EulerÄLagrange equations for the Lagrangian

L =

〈
z

∣∣∣∣∣i ∂̂

∂t
− Ĥ

∣∣∣∣∣ z
〉

will be different if |z〉 = |α〉 or z = |α±〉, as is evident. It is interesting to note also that
a similar picture is in the context of the pseudospin SU(1, 1) dynamics in the frame of the
mean ˇeld approximation induced by the variational principle on nonlinear Hamiltonians [18].

Important Considerations. We can be tempted, instead of the choices given by Eqs. (17)
and (18), e.g., superˇeld solution with chiral and antichiral parts, to use directly a chiral or
antichiral superˇeld as for the three-dimensional case (represented by the Wigner little group
SO(2, 1)) in Refs. [9Ä11] of Part I. But this choice is absolutely inconsistent when we treat
the four-dimensional problem described for the Lorentz group SO(3, 1): this enforces only
bosonic ˇeld as solution instead of superˇeld with its corresponding anticommuting part.

The particular choices (17) and (18) are based on the observation that the term

i∂0(σ0)αβ̇(θ
β̇ − θα) in Eq. (16) is the equivalent in the superspace to the term for the

ordinary Dirac or KleinÄGordon equation for a particle in a constant electromagnetic ˇeld [2]

where in our case A ≡
(

0,−iPμ(σμ)αβ̇θ
β̇
, iPμ(σμ)αβ̇θ

β̇
)

plays the role of the electromag-

netic potential 1-form. As we said in the previous paragraph, still the action is for a free
particle in an N = 1 superspace, the supersymmetry of the model enforces to mix even and
odd superspace coordinates giving a similar picture of the ordinary electromagnetic interaction
in QFT. The claims in Ref. [10] Part I about the impossibility of parastates in D = 4 are
based on a not so good choice in the appropiate coordinates well adapted to the physical
problem under consideration. A more detailed analysis will be given elsewhere.

5. CONCLUDING REMARKS

In this work the problem of the physical interpretation of the square root quantum oper-
ators and possible relation with the TDHO and coherent and squeezed states was analyzed
considering the simple model of superparticle of Volkov and Pashnev [1]. Besides the ex-
tension and clariˇcation of the results of our previous work [7], now we make complete this
research with the following new results:

i) The relation between the structure of the Hilbert space of the states, the spin content of
the sub-Hilbert spaces and the CS and SS realization of the physical states was established
for the particular model presented here.

ii) The relation between the relativistic Schréodinger equation and other type of equations
that involve variables with fractional spin and the model analyzed here was established and
discussed.
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iii) As for the KleinÄGordon equation, the conserved currents for the ®square-root¯ states
(paraˇelds) and for the square states were explicitly computed and analyzed. The component
zero of the current is linearly dependent on the energy E in the paraˇeld case and for the
®square¯ state the dependence on the energy is quadratic.

iv) The compatibility conditions were analyzed and the consistency of the proposed equa-
tion was established. The explanation of this consistency and the relation with the free
dynamics and the supersymmetry of the model was given.

v) New wave equation is proposed and explicitly solved for the time-dependent case. As
for the TDHO the physical states are realized in the CS and SS basis, and the link between
the topology of the (super)group manifold and the obtained solution from the algebraic and
group theoretical point of view was discussed and analyzed.

It is interesting to see that the results presented here for the superparticle are in complete
agreement with the results, symmetry group and discussions for nonsupersymmetric examples
given in Refs. [4Ä6], where group and geometrical quantization was used. This fact gives a
high degree of reliability of our method of quantization and the correct interpretation of the
radical Hamiltonian operator. It is clear that the ordinary canonical method of quantization
fails when the reparametrization procedure affects the power of the starting Hamiltonian
modifying inexorably the obtained spectrum of the physical states (see, e.g., [5, 6]).
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