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HIGH DIMENSIONAL INTEGRATION:
NEW WEAPONS FIGHTING THE CURSE
OF DIMENSIONALITY

P. Zinterhof

Department of Computer Sciences, University of Salzburg, Austria

The approximate computation of the definite integral of a function of several variables is one
of the basic problems of numerical analysis. The problem is hard because of the so-called curse
of dimensionality. This curse consists in the following: applying an integration rule with N nodes
to a univariate function, we will get an integration error, say, ¢ > 0. Applying the corresponding
Cartesian product rule to an s-variate function, we will need N**s nodes for the same integration error
€ > 0. In mechanics we deal with at least six-dimensional functions, but in contemporary financial
mathematics there occur 300-variate functions. The probabilistic Monte-Carlo methods provide error
estimates independent of the dimensionality of the problem. Unfortunately, these methods are both slow
in convergence and suffer from a lack of effectiveness as well. The quasi-Monte-Carlo methods, based
on the number theory, work fast and effectively, at least in the case of finite and smooth integrands.
Unfortunately, in reality multivariate functions with singularities do occur. The scope of the present
paper is numerical integration of multivariate functions with singularities. In many cases the proposed
methods are best possible with respect to the order of convergence. Best possible means an exact order
of the error term, essentially not worse than in the univariate case.

[pubnxeHHOe BBIMUCIIEHHE ONPENeNIeHHOT0 WHTeTp 7 (DYHKLHH HECKOJNBKUX IMEPEeMEHHBIX SBIII-
€TCs OIHO U3 OCHOBHBIX ITPOGJIEM YHCIEHHOTO H Jiu3 . [IpoGieM ¢ TpyIoM MO eTcsl PELICHUI0 H3-3
T K H 3bIB €MOTO «IIPOKJIATHS p 3MepHocTeil». OH 3 KoY eTcs B CIIEAYIOIleM: MHTErpHpOB HUE IO
N y31 M OZHOMEpHOW (PyHKLMH IPUBOAUT K OIIMOKe MHTerpupoB HUd € > 0. IIpu coOTBETCTBYHOIIEM
HHTETPUPOB HUM (PYHKIUH S-TIEPEMEHHBIX He0OX0oauMbl [N *™ s y3/10B C TOi Xe ¢ MOii OIIHOKOI HHTErpH-
poB Hus € > 0. B Mex HHKe MBI UMEEM JIeJI0 [0 MeHblIell Mepe ¢ 6-MepHbIMH (DYHKLHUIMU, HO B COBpe-
MEHHOH IPUKJI JHOH M TeM THKe Hcroib3yloTcs (yHKuuu 300 rmepeMeHHbIX. BeposTHOCTHBIE METOIbI
Monre-K ps1o 1o3BONSIOT OLGHUB Th OIIHOKY HEe3 BUCHMO OT mpoGieMsl p 3mepHocteil. K cox seHuio,
9TH METOABI X P KTepHU3yIOTCSd MEVIEHHOH CXOMMMOCTBIO M HH3KOU adextuBHOCTHIO. KB 31-MoOHTe-
K prmo-merompl, OCHOB HHbIE H TEOpUH yHceld, p OOT 10T ObICTpO M 3h(PeKTUBHO, MO Kp HHEl Mmepe
IUI OTp HUYEHHBIX W IV JKUX MOABIHTETP JIBHBIX BBIP XeHWil. K coX JIeHuio, B pe JIbHBIX BBIYUCIEHHSIX
MPUXOAUTCS UMETh A0 ¢ (PyHKIMSIMI MHOTHX MIEPEMEHHBIX C CHHTYISIPHOCTAMH. Llenpio 1 HHOM CT ThU
SBIIIETCS ONHC HHUE YHCICHHOTO MHTErpPHUpPOB HUA (DYHKLMH MHOTHX HEpPEeMEHHBIX C CHHIYISIPHOCTSIMH.
Bo MHOTHX CiIyd $IX IpelcT BIIEHHbIE METOJBI SBJIAIOTCS H IyYIINMH U3 BO3MOXHBIX OTHOCHTENIBHO II0-
PAAK CXOOMMOCTH, KOTJ M3BECT€H TOUYHBIH MOPSANOK CI I' eMOro OIIHOKH, KOTOPBI CyIIECTBEHHO He
XyXe, 4eM B OJHOMEPHOM CIIyd €.

PACS: 02.30.Cj; 02.30.Uu; 02.60-x



266 Zinterhof P.

Dedicated to the memory of N. M. Korobov

1. THE PROBLEM SETTING

Consider functions f(iml,xg,...,xs) =y, 0< 2z, <1, p=1,...,s. Let I* = (0,1)*
the open unit cube, and I° = [0, 1]® the closed s-dimensional unit cube. We are concerned
with the numerical approximation of the integral of the function f by means of finite sums.

Given a finite set of points in I® or I°, (mgl),x?),...,x@), (xgl),xg),...,xgs)),...,

(xs\}), - ,mgf})), we consider the integration method

1 N 1 1
:NZ _.,xgw)_/ /fxl, Jday -z, )
n=1 0 0

One is interested in small values of Ry, of course. Some known results: If the pointed
(x%l),...,mgf)), n = 1,...,N, is a set of uniform distributed and independent random

variables, one obtains the domical estimation of Monte-Carlo integration:

Ry =0 (%) . 2)

This convergence rate is rather poor, but independent of the dimensionality of the problem

and independent of the smoothness of the function f(z1,...,z,). Nothing is said about the
constants involved.
On the other hand, we consider the Cartesian product rules: Let x1,zs,...,xx € I° and

y = f(x) be a continuous function on I = [0,1]. So we have a one-dimensional integration
rule

1 < /
RY = 53 fan) - / f(x)da. 3)
n=1 0

The principle of the Cartesian product rules consists in a repeated application of the
one-dimensional rule to an s-variate function:

RY) =

L X N 1 1
D Z Z f(xm,...,mm)—/ /f (x1,...,xs)dxy---dzs.  (4)
ni=1 ns=1 0 0

The error term RE\;)S will not be better than RE\}), in general. But the computational
complexity is N°. This fact is the well-known curse of dimensionality. There are two
remedies: the Hlawka—Koksma inequality and Korobov’s method:

Let x1,X2,...,xy € I°. Let I(a) =x:0< 2z, < ap,p=1,...,s,a € I°.
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Definition.
n€1
Dy :=sup #Han € Ia)} aiaz - - as (5)
a N
is called the *-discrepancy (star discrepancy) of the finite point set x;,...,Xxy.

The following theorem is essentially due to H.Weyl: Weyl’s criterion: The infinite
sequence (Xy),-;, X, € I%, is uniform distributed if one of the following conditions holds:
(a) for all continuous functions f : I° — C holds

N
1
Jim 5 3 ) = [ i (©)
n=1 s
(b) for all m € Z* holds
N
: 1 2mimx, __ 07 m 7& 07

()
]\}EIIOC ‘DN == 0.

Weyl’s criterion is the guideline for numerical application of number theoretical methods.
At first we cite the Hlawka—Koksma inequality:

Theorem. (Hlawka): Let f(x) be a function with bounded variation in the sense of
Hardy—Krause, V' (f(x)) < co. Then holds the inequality

1 N
Ry()] = |3 S 160 = [ £0dx| < D). ®)
n=1 Is

There is a huge number of estimations of the discrepancy of special sequences. We give

only two examples.
S

ny no Ng * 2
.Example 1. Let Xp, ... n, =. N’_W’j"’ﬁ) ,M1y...,ns =1,...,N. Then D}. < ¥
This also means the curse of dimensionality.
Example 2. Let (ai,...,as) € Z° be optimal coefficients modulo N in the sense of
Korobov. Let x,, = (%,..., n]ilfs) mod n,n=1,...,N. Then
In N)?
D}‘V:O<(“N)>,ﬂ<s ©)

holds. Apart from the logarithmic factor this estimation is independent of the dimensionality
of the problem. Unfortunately, the Hlawka—Koksma inequality does not take into account
additional smoothness conditions of the function f(x).
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Korobov’s method overcomes this flaw:

Let m = max (1, |m|), m € Z. Consider the Korobov classes

£2(0) = {09 s lotm) < S me ). (10)
where C'(m) means the Fourier coefficients of f(x):
C(m) = /f(x) e 2mImX gy (11)
j2
Remark. If f(x) is 1-periodic in each variable z1, ..., z,, and if aaaaigfaa is continu-

x10 Yy

ous and bounded by C, then f € E¥(C). This can be shown by as-fold partial integrations
of formula (11).

Theorem. (Korobov): If f(x) € EY(C)and if a = (aq,...,as) consists of optimal
coefficients in the sense of Korobov, then the estimation holds:

N

1 na C1C(In*? N)

== ) = < == )

RN = |57 27 () - [ reoax < 22, (12)
— 4

with an explicit constant C; and some § < s. This estimation is best possible apart from

logarithmic factors: There is always a function f(x) € E$(C), such that

1 na C(s) In*"H(N)
Is

1
More generally, there is no integration rule with Ry = O (m) if f e ES.

All these methods are classical and can be found in Korobov [3], Drmota-Tichy [1] or
Niederreiter [2].

The methods described are concerned only with proper integrals of bounded functions.
Singularities are not allowed. From the theoretical and also from the practical point of view
it is important to develop integration rules for unbounded functions as well:

Problem. Let f(x): I®* — C or I* — C. Find classes of unbounded functions f and

N

integration rules Z gn N f(Xp), such that

n=1

N—o0

N
lim ngNf(xn):/f(x)dx. (14)
n=1 Is

Furthermore, give estimations for the error term

N
Ry = gnnf(xn) - /f(x)dx. (15)
n=1 Is
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2. SOLUTIONS OF THE PROBLEM

We distinguish between the two cases:

First case: The location of the singularities of f(x) in I® is unknown.

Second case: The location of the singularities is known. We assume that f(x) is un-
bounded at most on the bonudary of I® = (0,1)®.

For the sake of completeness we refer to some of our own former results [4].

Given a function f : I* — C, so we define functions fg, fB, B > 0 such that

fB(x) = f(x), if [f(x)| < B,
’ =0, if |f(x)| > B, (16)
fB(X) =0, if|f(x)‘ < B, (17)

= f(z), if [f(x)[> B.

So we have f(x) = fB(x)+ f5(x). We gave a suitable class of functions in the following
manner:
Definition. The class C(3,7) of s-variate functions f(x),0 < x < 1, consists of all
functions which fulfill VB > 0:
(a)
I(|fB|) = O(B~?) for some § > 0, (18)

(b)
V(fB) = O(B") for some v > 1. (19)

Here V/(.) means again the variation of a function in the sense of Hardy and Krause. For
dimension s = 1 the definition coincides with the usual total variation of a univariate function.
The use of V(.) is natural because of the functional analytic connection between the spaces
of continuous functions and the spaces of Radon measures, i.e., point measures and Lebesgue
measure.

We proved the following theorem:

Theorem. If f(x) € C(8,~) and if the discrepancy of the set of nodes x1,Xa,...,Xy is

1

Di, then for B = (D% )77 the estimation holds:

N
1(7) = v 3 filxa) + O (D3) 757 20)
n=1

Remark. We also proved that the order of convergence stated in (20) is best possible
even in the case s = 1, provided f(x) € C(f,7). Now we come to case two, the new
and much more efficient results concerning the case that the singularities of the integrand are
concentrated on the boundary 0I° of the unit cube.

The idea of the method: Consider a univariate function f(x), f : (0,1) — C, which has
singularities at x = 0 or = 1, and which fulfills some smoothness conditions in (0,1). We
ask for an integral-preserving transformation of f(x) which also continues the differentiability
conditions of f(z) to I = [0,1].
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Let p(t) = = be a function, which is strictly increasing in [0, 1] and which fulfills dif-
ferentiability conditions of sufficient high order. Then we have for functions p(t) with

p(0) =0,p(1) = 1:
1 1 1
flx)de = | f(p(t)p'(t)dt = [ g(t)dt. (21)
[ ] /

If p(t) does not tend too fast to p(0) = 0 and p(1) = 1, then one will be able to remove
singularities at x = 0,1 by means of (21). We propose the function

r(1—=7))7dr | . (22)

O\H

t
p(t) = p, (1 =po/ NYdr, po=
0

The connection of p(t) with the incomplete beta integral is clear. We state some important
properties of p(t):

Lemma.

() p(0) = 0,p(1) =1,
(b) p'(0) =p'(1) =0,p(t) > 0 for t € (0,1),
(©) p™(0) =p™ (1) =0forn=1,2,...,n0 <7,

@ [p™ () < p ((1—t))7+1"f0r1 n<vy+land0<t<1,

@ py<po Y,

ljl’
i+2j=n
1 <4+27+1(7+1) 1

DT S~ 1w Ga-pp

Po 1 Po 1
H < —t1— < 1—)7 Tt £ <t<1.
(8) p(t) < Nt p(t) 7+1( )7 for 0

Some proofs of the parts of the Lemma are straightforward, some are not. We now
introduce a suitable class of functions, having singularities on 01°:

Definition. H?*(C) consists of all functions f(z1,...,25),0 <z, < 1,p=1,...,s,

such that for all ny,...,ns,0<n, <a,p=1,...,s, holds:
ni1+...+ns
0 f(xl"”,;xs) < C 7 (23)
Ozt Oxy? - - dxg® s o
H(xp(l — )"
p=1

whereas all the derivatives are continuous, and 0 < § < 1.
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The introduction of the class H2*(C') was motivated by the univariate extreme function
f(z) = (z(1—2))7",0 < B < 1. We remind (21) for general s = 1,2,...:

1 1 1 1
/-~-/f(x1,x2,...,xs)dx1dx2~-~dxsz/ /g t1,...,ts)dtrdts (24)
0 0 0 0

g(tr, . ts) = f(p(t), p(t2), .. p(ts))p (E1)p (t2) - - P (ts).- (25)

We consider now the reactors of nodes

with

T 1+ a 1+na2 L_Fnas
" \2N N’2N N’>'TV2N N

optimal coefficients, a = a(/N), and n = 1,..., N. We get the integration rule

), mod N, where a = (ay,...,as) are

N
In(f) = % Z fp(tin),p(tan), - - p(tsn))P (t1n) P (t2n), - - P (s yn), (26)
n=1

. 1 na,
with ¢, ,, = 2N+T ,p=1...,s

Now we are able to state the
+4

Theorem. If f ¢ H?(C) and if v > ?—ﬂ, then

(In N)*B

TNa (27)

1 1
/ /f (x1,...,x5)dx1 -+ -dzs — IN(f)| < Ci(e, 8,7, s)C
0 0

where the constant C;(«, 8,7, s) is explicit. The proof makes heavy use of the lemma and
makes use of an explicit and complicated estimation of all of the derivatives of g(¢1,...,ts).

Remark 1. According to (13), our theorem cannot be improved significantly, even in the
case of boundedness of f(x).

Remark 2. The use of the classical optimal coefficients is only one example of the
application of number-theoretical methods to improper integrals.

We have further methods, using, e.g., the Weyl sequences, (n®), especially the sequences

n(e™,e™,...,;e"),n=12...,r; #r, € Q, i # k. Estimations of Ry = /fdx—IN(f)

via the Diaphony are available as well.

LITERATURE

Korobov’s book is a classical reference, whereas Niederreiter’s book contains most of
the recent developments in number-theoretical numerics. The book by Drmota and Tichy is
perhaps a comprehensive book on uniform distribution of sequences, containing two thousand
references.
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