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KOMIIBIOTEPHLIE TEXHOJIOTHU B ®U3UKE

TIME-DEPENDENT EXACTLY SOLVABLE MODELS
FOR QUANTUM COMPUTING

A. A. Suzko "1, G. Giorgadze
“Joint Institute for Nuclear Research, Dubna
YJIPENP, National Academy of Sciences of Belarus, Minsk

A time-dependent periodic Hamiltonian admitting exact solutions is applied to construct a set of
universal gates for quantum computer. The time evolution matrices are obtained in an explicit form and
used to construct logic gates for computation. A way of obtaining entanglement operator is discussed,
too. The method is based on transformation of soluble time-independent equations into time-dependent
ones by employing a set of special time-dependent transformation operators.

INeproanyecku 3 BUCAIIMHA OT BPEMEHH I' MIJIBTOHH H, JIONMYCK IOIIMI TOYHbBIE pEUIeHHs, HCIIOJb-
3yeTcsl Ul MOCTPOSHUS YHMBEPC JIbHOTO H GOp KB HTOBBIX BEHTHJICH I KB HTOBBIX KOMIIBIOTEPOB.
ITox 3 HO, K K KOHCTPYHPOB Tb JIOTHYECKHE TeHTHl H OCHOBE MOJIyYEHHBIX B SIBHOM BHJE M TpPHIl dBO-
monuu. O6Cy X eTcd T KXe crocob MoNydyeHHs ollep TOPOB 3 IIyThIB HUA. MeTOox OCHOB H H Ipeolp -
30B HUM CT LMOH PHOH 3 1 UM B HECT IMOH pHbIE C ITOMOINBIO CIIEIHU JIBHBIX 3 BUCSAIINX OT BPEMEHH
orep TOPOB Ipeodp 30B HHSA.

PACS: 02.70.-C; 03.67.Lx

INTRODUCTION

Recent studies of quantum computation have attracted considerable interest in both theo-
retical and experimental physics. The physical realization of the qubit register and a universal
set of one-qubit and two-qubit logic gates is an important problem of quantum computa-
tion [1-3]. In this paper we shall construct one-qubit and two-qubit gates with desired
properties controlled by time-dependent Hamiltonian.

A quantum computer is composed of a set of qubits which can be manipulated in a
controlled way. Any quantum two-level systems can be taken to create qubits. A computation
process corresponds to the evolution of the set of the qubits according to a specific unitary
operator, for example, evolution operator U (t). A general operation is decomposed into a
discrete sequence in time of operations — quantum gates. The simplest unit of quantum
information is a quantum bit, or qubit. The qubit is a vector in a two-dimensional Hilbert
space, which can be presented as |¢)) = «|0) + 3|1). The basis vectors |0) and |1) are chosen

as |0) = <(1)> , b = (?) , W)y =a (é) +0b <(1)> = (Z) . Here v and (3 are complex
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coefficients, which satisfy the condition |a|? + |3]? = 1. Then [¢) is the normalized vector,
and o? and 32 characterize the probabilities of the results |0) and |1), correspondingly. The
2nd order matrices U(2 x 2) transform one-qubit states and describe their evolution in time:

Uil U12
o) =u@x Dl )= (w2 ).
Such transformations in quantum computation determine one-qubit quantum operations —
quantum gates.

The formalism of quantum mechanics is usually applied not to individual systems but to
ensembles of systems. In quantum computation, the state of the computer of n qubits can be
expressed as a vector |¥) in a space of dimension 2". Vector |¥) of the quantum register
from n qubits is expressed as a complex linear superposition of 2™ basis states:

21
O) = > arlin)- )
k=0
Here ay, are projections of the vector |¥) on the directions of basis states |jo), [j1),- - -, |[d2n—1),

> a} = 1. Basis states |j) = |i1,42,...,in) = |i1) @ |i2) ® ... |in), i1,42,...,in = {0,1}
k
are presented as

2

ljn—1y = 1) ®[1)...® 1)

The transformation of an initial state vector |¥) into the final vector |V ) models the process
of calculation on quantum computer

T, = U(2" x 27)|Tp).

Vectors |¥g) and |¥s) are vectors in the 2" Hilbert space. The transformation matrices
U(2"™ x 2™;t) define the dynamic evolution of the quantum system from n qubits. At the
same time, the matrices U (2" x 2"; t) provide the process of quantum computing at each fixed
moment.

Clearly, the realization of the transformation /(2" x 2™) with n > 3 is a very difficult
problem. As usual, one considers the presentation of /(2" x 2™) as a production of second
U(2 x 2) order and forth U(4 x 4) order matrices:

U™ x2m) = [Juhi(2 x 2) @ U; (2% x 2°). 3)

,J
As is known [1], a universal set of gates is given by 2 X 2 unitary operators and a unitary
entangled operator 4 x 4 which acts on C? ® C2. We shall show how it is possible to generate

explicitly one-qubit logic gates from the time evolution matrices and give a way of obtaining
entanglement operators.
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1. A UNIVERSAL GATE SET

The universal one-qubit logic gates can be constructed from the time evolution matrices
which we obtain in a closed analytic form. In our approach, the time-dependent periodic
Hamiltonians admitting exact solutions are applied to control the time evolution of the one-
qubit gates. The time-dependent Hamiltonians are obtained from time-independent soluble
Hamiltonians and a set of unitary time-dependent transformations [4].

Suppose that the time evolution of the quantum system is governed by the Schrédinger
equation

01, ))
ot
with s = 1 and T periodic time-dependent Hamiltonian, H (¢t) = H(t + T).

Assume that the initial state of the qubit can be written in one of the states of the
time-independent Hamiltonian H:

= H(r,t)|9(r,t)) 4)

1 &)

Heo B=2\ cosf  sinf
N N sinf —cos#f
$1 = cos0/2|0) + sin6/2|1) or ¢ = — sin6/2|0) + cosf/2|1). Taking the gauge transfor-

mation as

[T (r,t)) =S@)|®(r,t)), S(t)=exp(—iowit/2), (6)
the time-independent Hamiltonian (5) is changed to the time-dependent one:
H(t) = S(H)HST(t) +iS(t)ST(t). (7)

The evolution operator U(t) = exp (—iomwit/2)exp (—iHt), corresponding to the time-
dependent Hamiltonian

H(t) = A cos 0 cos (w1 t) sinf — wy /2 + i cos 0 sin (wit)

sinf — wy /2 — i cos O sin (wt) — cos 0 cos (w1t) ’

is written as

_ cos (w1t/2)  —isin(wit/2) exp (—iAt) 0
Ui(t) = ( Cisin(wit/2)  cos (wit/2) ) ( 0 exp(iM) ) ®)

The time evolution matrix U(¢) is the universal one-qubit gate, which is controlled by the
time-dependent magnetic field parameters w; and A.

An important one-bit transformation is the operation of negation or inversion operation
NOT = o,. The gate NOT can be obtained from (8) at w1t = 7w and A\t = 2nm and then after
multiplication of the result by ::

NOT = iUy (w1t = 7, A\t = 2n7) = ( (1) (1) ) . 9)
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The transformation NOT exchanges |0) and |1), e.g., NOT(a|0) + b|1)) = all) + b|0).
Another special one-qubit gate can be obtained from (8) at w1t = m and At = w/2 and after
multiplication of the result by ::

Y = iU (wit = 7 M = 7/2) = ( ; N ) _— (10)

The special gate Z is obtained from (8) at w1t = 47w and At = 7/2 and after multiplication
by i:

Y = iUr(wit = 4w, Mt =7/2) = ( (1) _01 ) =0,. (11)

Now let us obtain another important single-bit transformation. It is the Hadamard transfor-
mation defined by

iy
H_ﬁ<1 _1>—\/§(0w+az). (12)

When applied to |0) and to |1), H creates the superposition of states with the equal probability

1 1 0 1
HI0) =H =—(|0)+11)), H|1)=H = —(|0) —|1)).
o) =1 (g) = 50+ ). A0 = (§) = 500 = 1)
If the initial state of the qubit is |0), then the evolution matrix U(t) corresponding to the
time-dependent Hamiltonian (8) is written as
U(t) = exp (—iozwit/2) exp (—io, At) exp (—io,0/2) =
_ cos (wit/2)  —isin(wit/2) exp (—iAt) 0 y
T\ —isin(wqt/2)  cos(wit/2) 0 exp (i\t)

« | 08 (0/2) —sin(6/2) a3
sin (0/2)  cos(6/2)
Att=0, 0= m/2 and any wy, A, from (13) we obtain the gate
~ 1 1 -1
Ulrxe=0d=r/2 =2 (1 7). (14)

To obtain the Hadamard gate, we multiply NOT by the gate U(wi, A\t = 0,0 = w/2).
Therefore, the Hadamard gate H is a result of the sequence of two transformations:

H = iUy (m,2mn,0 = 0)U (w1, A, 0 = 7/2;t = 0). (15)

Here Ui (t) = U(t; 6= 0) was used. Applied to n bits, H generates superposition of all 2"
possible states, which can be considered as a binary representation of the numbers from 0 to
2" —1:

(HoH®...® H)|00...0) =
A= (0 + 1)@ (0) + 1) © ... © (10) + 1)) = F= X35 i) (16)
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1.1. Construction of Two-Qubit Gates. The 2nd order matrices U;(2 x 2) transform
one-qubit states. The 4th order matrices U;(2% x 22) transform couples of one-qubit states.
There are four basis states in 4th dimension Hilbert space for two-qubit systems building on
one-qubit states |0),|1):

{100) = |0) ®10),101) = |0) ®[1),[10) = [1) ©[0),[11) = [1) @ [1)},

1 0 0 0
0 1 0 0
0 0 0 1

Any two-qubit state can be expressed as a superposition of these basis states:
|\If> :Coo‘oo>+Clo‘10>+Co1‘01>+011‘11>, (17)

where ‘600‘2 + |C()1|2 + ‘610‘2 + ‘611|2 = 1.

Entanglement. A gate G is said to be entangling, if |¥) = G|¢1) ® |¢)2) is not decom-
posable as a tensor product of two one-qubit states. If in (17) cooc11 — co1¢10 # 0, then |¥)
is an entangled state. The property |¥12) # |1) ® |1)2) is called entanglement. In our case
the entanglement operator is obtained from two independent systems with the use of unitary
gauge time-dependent transformations, which lead to time-dependent periodic operators and
entanglement of states.

One of the important two-qubit gates is the Controlled NOT=CNOT gate, which can be
defined by

1 0 00
CNOT = [0 © 1+ [l @, = | o & o (18)
0 01 0
1.2. Construction of the Hamiltonian with the Desired Entangled Operator. Let
H=hR1+1Qh+e€A, (19)
where € € {0,1} and h is a two-dimensional diagonal time-independent Hamiltonian in the
form h = ( g 2 ) . The evolution operator of the matrix Schrodinger equation (4) with

the Hamiltonian (19) is expressed as follows:
U(t) — (e—iht ® e—iht)e—iAt’

if the operator A commutes with the Hamiltonian » ® 1 + 1 ® h. We would like to get the
entanglement operator U (t) and to construct a corresponding Hamiltonian in the form (19).
To this end, let us select the operator R(t) = e~*4* in the form

1 0 0

0

| 0 cos(t) —isin(t) O

R(t) = 0 —isin(t) cos(t) O (20)
1

0 0 0
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Find A(t) from

0 0 00
CdR@) .. [0 0 1 0
P W= 01 00 @1
0 000
. 171 0 . . .
The matrix h = 03/2 = slo 21 satisfies the condition of commutation [A, (h® 1+ 1

®h)]. At last, substitution of e~*4* and h into the evolution matrix U (t) gives the entangle-
ment operator

et 0 0 0

0 cos(t) —isin(t) O

0 —isin(t) cos(t) 0

0 0 0 e

U(t) =

So, the entanglement operator has been obtained with the use of the unitary time-dependent
transformation (20), which leads to the time-dependent periodic operator U(t) and entangle-
ment of states. We obtain the corresponding Hamiltonian (19) with A as given in (21).
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