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DISCRETIZATION AND ITS PROOF FOR NUMERICAL
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EQUATION WITH INACCURATELY GIVEN CAUCHY
CONDITIONS ON AN INACCURATELY DEFINED
ARBITRARY SURFACE
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A Cauchy problem for Laplace equation with inaccurately given Cauchy conditions on an inac-
curately defined arbitrary surface is considered. Discretization was performed and proved to obtain
numerical solution. An economic algorithm is proposed.

P ccmorpen mpo6rnem  Komm g yp BHeHmst JI 1 ¢ ¢ HeCTpOro ONpefesieHHbIMH YCIIOBHSMU
Komm H HecTporo 3 1 HHOUM NPOU3BOJIBHON MOBEPXHOCTH. [IpoBOAMTCA TUCKPETU3 LS, KOTOP 5 3 TEM
UCIIOJIb3YeTCd Ul IOJIy4eHHsl YUCIeHHOro pemieHud. IIpefct BiieH NPHKII JHOH JIOPUTM.

PACS: 02.60.Cb; 02.60.Jh

FORMULATION OF THE PROBLEM

A mixed version of Cauchy problem for Laplace equation in a rectangular cross section
cylinder bounded by an arbitrary surface and a plane is considered. Boundary conditions of
the first kind are given on lateral sides, Cauchy conditions are given on the arbitrary surface:

Au(M)=0, M e D(F,H),

0
uls = f, %L@ =g, (1)

U|z=0 = 0, U‘a::lm =0, u|y:0 =0, u|y:ly =0,
where
D(F,H) ={(z,y,2): 0< 2 <l;,0<y <ly, Flz,y) <z < H},
S={(z,y,2):0<z<l;,0<y<ly, z=F(z,y)}, (2)
Feo?(l), (2) = {(z,y,2): 0 <x < l;;, 0 <y <, z = const}.

As we are given Cauchy conditions on the surface S, this mixed problem is close to
Cauchy problem and thus it is ill-posed [1]. Note that the surface S, where Cauchy conditions
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are given, is described by the equation z = F'(x,y), where F is an arbitrary differentiable
function, which does not permit the use of Fourier method to solve the problem (1).

A method applicable to a wide range of problems described by elliptic equations is
proposed in [1]. The method is based on reducing the original problem to an integral
equation of the first kind with the right-hand side of the integral equation being an integral
of given functions over surface S. On the one hand, this makes it possible to get the exact
solution in explicit form, and to use Tikhonov regularization to obtain stable solution on the
other hand.

Keeping in mind applications of the problem, we consider the surface S as well as
Cauchy conditions f and g on that surface being both measurement data, that is, being given
approximately. Thus we have approximate functions f°, g%, F* instead of exact functions f,
g and F' such that

17—l <o "~ all <o ®
[F* = F < p. S

In case when the surface S is given approximately, the right-hand side of the integral
equation requires calculating the normal to this surface, or, actually, the gradient of the
function F'*, which is an ill-posed problem of differentiation of an inaccurately given function.
A stable method of its solution is based upon Morozov approach to the problem of an
unbounded operator reconstruction [2]. As an approximate value of the gradient of F'* we
will take the gradient of the extremal of Tikhonov functional, the extremal is obtained as a
Fourier double series [3]:

oo

jalz
W (z,y) = Z e 5 sin T sin 7Y (5)
1 ™ m Ly ly
m=ly g (I0) 4 (I
L L

( is the regularization parameter. Accordingly,

oo

meWéL (%) = Z wnFém m\ >
| () ()]
X (1% cos sz sin w;:y +j% cos w;:y sin lex) (6)
According to [1] stable approximate solution of the problem (1) can be presented as
ugH (M) = v (M) — ®**(M), M € D(F, H), @)
D(F, H) is given by (2), ®%* is given by
(1) =~ [ |5 Py Pt (P)-
11(0)
— [U(P)(Vpe(M, P),nf (P))] dupdyp, (8)

P=P(z,y,W})esH
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nf = n‘l‘ﬂ(ﬂ =V, Wﬂ‘(# —k, B(u) = constu, nf = |nf|, Wg is given by (5),
2 [e'e] ef‘n'q/ ”2+TQ |Z1\/1 ZP‘
(M, P) = Il Z 2 2 x
Thaly n,m=1 TL_ m
2 l
X sin TEM sin Tmym sin mep sin mep’ ©)]
o I, I I,

function vg"s is given by

712 'rn.2
s > puo (a) eTr E—Fl% (z2c~a) . TNTpy . TMYM
(M) = Y = sin sin . (10)
el L LS EE * (H—a) lo Ly

Here ®%:% (a) are Fourier coefficients of function ®"°(M)|pscri(a):

o Ly
4
B9 (a) = —/dx/dy dOH (2, y, a) sin Wlmc sin Y. (11)
o 0

I, o Iy

« is the regularization parameter. According to (2) notation, the a value is taken such that

a< min F(zx,y).
(z,y)€T1(0) (.9)
The theorem of uniform convergence of the approximate stable solution of the problem (1)
to the exact one is proved [1].

NUMERICAL SOLUTION

Here we will take a close look at the discretization of the problem (1) to obtain numerical
solution in case when the surface S and the Cauchy conditions f and g are given approximately
(3), (4).

Let the rectangle II(0) given by (2) be covered with uniform grid (N + 1) x (N, + 1)
such that

xi:zﬁ, 1=0,..., Ny,

, (12)
. y .
y‘:]_vjzov"'an
J Ny Y
then the Fourier series
D(x,y) = Z ®,,,, sin 7rlnx sin ﬂ;ny
x Yy
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substituted for the sum

Ny—1Ny—1

Blri,y) = Y. > N sin ”xz sin ”l”yj, i=0,...,Nys, j=0,....N,,
n=1 m=1 Yy
and the Fourier coefficients
4 ly ly
‘i)nmz—/dx/dy O (x,y)sin M2 gin T
Lol la L,
0 0

are calculated as

N
(bnm_

_1N,—1
™mT; . TmY;
NN Z Z@xz,y] sin ZIZSIH yj, n=1...,N;, m=1,...,N,.

=1

Norms (3) and (4) are regarded as finite sums, functions f, g, F, f, g%, F* are regarded
as traces of continuous functions on the grid (12).

Substitute the function ¢ (9) in (8) for its finite sum — function ™ (M, P), substitute
the integral (8) itself for composite trapezium formula on grid (12) over I1(0):

N,— 1N7/
(I)(S’M’NT(M =- xz,yj (M Pu)n1 (i, yj)—
=1 j=1
—f6<xi,yj><vpso (M. Pt )] Pl = (g Whzn,), (13
Ny—1Ny—1 ~
a ‘ Fu ; ,
Wh(zi,;) = nm sin T sin T (14
1 el ™ ™™m la Ly
1+8|{—) +—
Iy ly

Omitting the proof we get the estimate |®%*NT (M) — &(M)|:

| B2 NT (M) — ®(M)|pren(a) < Crv/i+ Cod + CsN; > + CyN, +
+ Oy e~ md minNe/le Ny /L1 i [N, /1, Ny /1,] =
= A(u,0, Ny, Ny), d= mir; F(z,y) —a. (15)

(z,y

The heart of the algorithm for solving the problem (1) is calculation of «discrete» Fourier
coefficients of continuous function ®%# (8):

210 nT Tmy
~5,/L,NT 5;LNT i sin J
Dok =N N Z; Z o (xi,y5,a) sin l;v sin ,
v -

n=1...,N;—1, m=1,...,N, — 1.

(16)



298 Laneev E. B., Mouratov M. N., Zhidkov E. P.

To calculate NN, values of function ®%#NT “each of them being an integral calculated as
a sum of N,N, terms, we need the order of (N,N,)* operations, since there is a double
Fourier series under the integral sign, producing NN, operations for every fixed pair of M
and P. This is the decisive factor since we need the order of (N, N,)? operations to calculate
Fourier coefficients having calculated function values. We can reduce the scope of work if
we calculate Fourier coefficients as integrals

I ly
4
@‘WNT ——/dx/dy ®OHNT (1 4. a) sin % sin me, 17
0 0

Luly L L

and perform the integration in (17) under the sum sign in (13), and after that integrate the
function "V and its derivatives series term by term. With regard to orthogonality of sines we
have

n 9 Nz—1Ny—1
70,1, NT _ 2 : 2 : P
(Dnm (a’) - 2 N N f x'uyj n1 z(xﬂy])
l ’I’L_+ T =1 j=1
etz
x y
2 2
=, [+ (Wh (zi,y;)—a) ™ME; . TMY;
X e T cos 5
@ y
m 9 Nz—1Ny—1
+ 3 N, N § § f xzayj ny y(x’myj)
l n =1 j=1
et e
x Yy
2 2
=y [+ (Wh(zi,yi)—a) | mna; MY
X e o sin —Z
:c ly
—1Ny—1 2 | a2 .

. —m it (Whwiy)—a)  wnx; | mmy;
N Z E f %7% o sin ] sin o
=1 j=1 x Y

1 9 Ny—1Ny—1

- 9° (@i, yj)nk (i, y5)

n2  m2 NaeNy pomr il
™ l—2+l—2
x Yy

- [ B2 (WS (wi,y5)—a) na Tmy;
X e £ sin ! —yj, (18)
Iy ly

where nf’ (n‘l‘x, ny,,—1) is given by V., Wg —k; W} is given by (14) and n{' = |nf| =

J1+ 07 + ()2

Note that ®*#NT(a) = 0 for n > N,, m > N,, since the series ¢(M,P) (9) is
substituted for the finite sum @~

Also note that to calculate Fourier coefficients by (18) we need the order of (N,N,)?
operations.
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S,p,NT

Discrete approximate solution u

of the problem (1) is given by

Ui)u)NT(xiv Yj, Z) = ,Ugc)u)NT(xiv Yi, Z) - (I)(S’M’NT(xiv Yi, Z)v (xiv Yi, Z) € D(ng H)7 (19)

2 ”YLZ
oo =~ Tr ;LT’ + 02 (z—a)
w8 NT , ) .
o0 N1 (g) e CE . TNX; . Ty,

o ONT (g, Yj, 2) = sin

sin
! om [ 27+ (H=a) la by
n,m= l l
’ 1+ ae ©
No—1Ny—1 = s N ﬂ\/%JFTTz(Z*a)
o0V (g)e Ve Y TTNI;

-y ¥ sin sin 271 (90)

2 2

— — o, [n2 4 m (Hfa) lr ly
n=1 m=1 \/ 12 12
14+ ae = v

function ®#NT is calculated by (13).

The theorem of uniform convergence of the discrete approximate stable solution of the
problem (1) to the exact one is proved:

Theorem. Let the solution of the problem (1) exist in D(H,F), a = a(A), «a(A) —
0, A/ya(A)—0as A — 0. Then the function uyay given by (19), where according to
(15), A= A(M, 57 NT, Ny) = Cl\/ﬁ + C56 + CgNz_2 + CgNy_2 + 05 e—ﬂ'dmin [Ne/le,Ny /1]
min [Ny /1, Ny /1], converges uniformly to the exact solution of the problem (1) as § — 0,
p— 0, Ny — o0, Ny — o0 in D(F +¢,H —¢), where € > 0 is some fixed number as small
as is wished.

CONCLUSIONS

Research results may be applied to obtain numerical solutions of problems described by
harmonic functions, for example, to a problem of a stationary temperature field analytical
continuation toward its sources with the purpose of the sources identification [4].
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