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Recent progress in the numerical calculation of memory functions from molecular dynamics simula-
tions allowed gaining a deeper insight into the relaxation dynamics of liquids and proteins. The concept
of memory functions goes back to the work of R. Zwanzig on the generalized Langevin equation, and it
was the basis for the development of various dynamical models for liquids. We present brie�y a method
for the numerical calculation of memory functions, which is then applied to study their scaling behavior
in normal and fractional Brownian dynamics. It has been shown recently that the model of fractional
Brownian dynamics constitutes effectively a link between protein dynamics on the nanosecond time
scale, which is accessible to molecular dynamics simulations and thermal neutron scattering, and the
much longer time scale of functional protein dynamics, which can be studied by �uorescence correlation
spectroscopy.
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INTRODUCTION

Since the early days of computer simulations the molecular dynamics (MD) simulation
method has become a fundamental tool in the study of condensed matter systems. The 1964
paper of Anesur Rahman on a simulation study of liquid argon by MD can be considered as the
pioneering work in the ˇeld [1]. Since then, the method has been used in an innumerable num-
ber of studies of liquids, solids, polymer systems, molecular crystals, and biomolecules [2Ä4].
The history ˇles of MD simulations contain a wealth of information which is in many cases
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exploited only to a small fraction. This concerns, in particular, simulations of biomolecular
systems, where the MD method is mostly used as a sampling method in conˇgurational space
and the dynamics of the system is not considered. The purpose of this paper is to show
which kind of information on the dynamical properties of complex molecular systems can be
extracted from MD trajectories, and how the results can be used to develop analytical models
for their dynamics. An important tool in this context is the generalized Langevin equation
and the concept of memory functions, which have been introduced by Robert Zwanzig in the
1960s in order to describe the time evolution of correlation functions on a rigorous formal
basis [5]. In Sec. 1 of this article, the concept of memory functions and their calculation
from MD trajectories are brie�y described. In Sec. 2, the method is then applied to revisit
the old problem of a microscopic description of Brownian dynamics. Looking at the memory
function of the velocity autocorrelation function of a tracer particle in a simple liquid, it is
shown under which circumstances its dynamics can be approximated by Brownian dynam-
ics. In Sec. 3, we investigate the internal dynamics of proteins and we show in particular
that the latter can be described by the model of fractional Brownian dynamics. We discuss
how amplitude scaling of the memory function is re�ected in the self-similar behavior of the
associated time correlation function. The paper is concluded by a short resum
e of the results.

1. CALCULATING MEMORY FUNCTIONS FROM MD SIMULATIONS

In the following we consider a dynamical variable U ≡ U(p, q), which depends on time
through 2f phase space variables q = {q1, . . . , qf} and p = {p1, . . . , pf}. Here q and p are
generalized coordinates and momenta, respectively, and f is the number of degrees of freedom
of the system under consideration. The autocorrelation function of U , cUU (t) = 〈U∗(0)U(t)〉,
can be described by an integro-differential equation of the form [5]

ċUU (t) = −
t∫

0

dτMU (t − τ)cUU (τ), (1)

where MU (.) is called the memory function. The latter can be related to microscopic phase
space variables of the system under consideration and enables thus a rigorous formal descrip-
tion of relaxation processes. For practical purposes one often uses the Laplace transform
of (1), which allows one to relate cUU and M in Laplace space via

ĉUU (s) =
cUU (0)

s + M̂(s)
, (2)

M̂(s) =
cUU (0)
ĉUU (s)

− s. (3)

The Laplace transform of an arbitrary function f(t) is deˇned as f̂(s) =

∞∫
0

dt exp (−st)f(t).

One recognizes immediately that the special choice MU (t) = γUδ(t) transforms (1) into an
ordinary differential equation with the solution cUU (t) = cUU (0) exp (−γU t). Here δ(t) is
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the Dirac delta distribution and γU > 0 is a relaxation rate. The exponential form of cUU (t)
is characteristic for ®memoryless¯ Markovian processes, such as Brownian dynamics.

In [6], it has been shown that autoregressive modeling of a time series U(nΔt), which
has been generated by MD, allows one to extract the associated memory function from the
analytical form of the associated time autocorrelation function. Here Δt is the sampling time
step and the z transform is the equivalent of the Laplace transform for discrete signals. For
U(n) ≡ U(nΔt) the unilateral z transform is deˇned through

Û>(z) =
∞∑

n=0

U(n)z−n.

Starting from the discretized memory function, Eq. (1),

cUU (n + 1) − cUU (n)
Δt

= Δt
∞∑

k=0

MU (n − k)cUU (k), (4)

we obtain by z transform the following analogue of relation (3):

M̂U,>(z) =
1

Δt2

(
z

[
cUU (0)

ĉUU,>(z)
− 1

]
+ 1

)
. (5)

The function ĉUU,>(z) can be obtained by using an autoregressive (AR) model for the
underlying time series U(n),

U(n) =
P∑

k=1

akU(n − k) + ε(n). (6)

Here {ak} are constant coefˇcients, ε(n) is white noise with amplitude σ, and P denotes the
order of the AR model. The P +1 coefˇcients {ak, σ} can be efˇciently determined by using

the Burg algorithm [7,8]. The zeros of the characteristic polynomial p(z) = zP −
P∑

k=1

akzP−k

allow one to express ĉUU,>(z) as

ĉUU,>(z) =
P∑

j=1

βj
z

z − zj
, |z| > |zj |max,

where |zj |max is the pole with the maximum modulus and the coefˇcients {βj} are given by

βj =
1

aP

−zP−1
j σ2

P∏
k=1,k �=j

(zj − zk)
P∏

l=1

(zj − z−1
l )

. (7)

From (5) the memory function can be obtained by polynomial division, using that M̂U,>(z) =
M(0) + M(1)z−1 + M(2)z−2 + . . . We note that within the AR model, the time correlation
function cUU (n) has the form

cUU (n) =
P∑

j=1

βjz
|n|
j . (8)
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The Burg algorithm guarantees that |zj | < 1, such that lim
n→∞

cUU (n) = 0. The Fourier

spectrum of cUU (t) can be obtained via

c̃UU (ω) = Δt ĉUU (exp (iωΔt)), (9)

where ĉUU (z) =
+∞∑

n=−∞
cUU (n)z−n is the two-sided z transform of cUU (n). The latter has

the so-called ®all-pole form¯ [8]

cUU (z) =
Δtσ2(

1 −
P∑

k=1

akz−k

) (
1 −

P∑
l=1

alz
l

) . (10)

2. BROWNIAN MOTION REVISITED

In the following we study the in�uence of the mass and the size of a tracer particle in
a simple liquid on its velocity autocorrelation function (VACF) and the associated memory
function [9]. The idea is in particular to gain insight into the transition from complex
Hamiltonian to simple Brownian dynamics. For this purpose we consider a system of 2048
molecules of liquid argon at a temperature of 90 K, which interact via a simple potential of
the LennardÄJones type,

USS =
∑

i,j∈S

4ε

([
σ

rij

]12

−
[

σ

rij

]6
)

, (11)

UTS =
∑
j∈S

4ε

([
σ

rTj − δ

]12

−
[

σ

rTj − δ

]6
)

. (12)

Here ®S¯ stands for ®solvent¯ and ®T¯ for ®tracer particle¯. The parameter δ allows one
to change the size of the tracer particle. The LennardÄJones parameters are given by ε =
0.87864 a.m.u. · nm2/ps2 and σ = 0.29599 nm. The details of the simulation can be found
in [9] and we concentrate here on the results. In the following M denotes the mass of the
tracer particle; and m, the one of an argon (solvent) molecule.

Figure 1 shows the memory functions of the VACF and the VACF itself (insets) for
different mass ratios, ranging from M/m = 1 to M/m = 1000, and different diameters of
the tracer particle, varying from d0 = 21/6σ to d = d0 + 0.9 nm. Here d0 deˇnes the size of
a solvent molecule. The subˇgures aÄd display, respectively, the results for the mass ratios
M/m = 1, M/m = 10, M/m = 100, and M/m = 1000. One recognizes that increasing the
particle mass reduces the amplitude of the memory function, attenuating at the same time the
oscillations in the VACF, while increasing its size augments the amplitude of the memory
function and the oscillations in the VACF. The latter re�ect ®rattling¯ motions in the cage of
next neighbors, which are the more pronounced the lighter and the bigger the tracer particle
is. For the minimal size d0 and increasing mass, the VACF of the tracer particle exhibits, in
contrast, rapidly an exponential decay. It is important to note that the form of the associated
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Fig. 1. Memory functions of the tracer particle for mass ratio M/m = 1 (a), M/m = 10 (b),

M/m = 100 (c), and M/m = 1000 (d), respectively, and different particle sizes. The diameter of the

tracer particle is d = 21/6σ + δ with σ = 0.29599 nm. The insets show the corresponding normalized
velocity autocorrelation functions

memory function does not change with increasing mass, but just its amplitude. The latter
effect can be understood for the initial value, which is given by [10]

M (1)
v (0) =

〈F 2〉
μkBT

. (13)

Here 〈F 2〉 is the average squared force on the tracer particle and μ is its reduced mass with
respect to the simulated solvent. For M/m = 1000 (Fig. 1, d) it becomes visible that the
memory function scales with the inverse reduced mass and not with the inverse mass of the
tracer particle. The interesting point here is that not only the initial value of the memory
function scales with the inverse (reduced) mass, but the memory function over the whole time
scale. The observation that reducing the amplitude of the memory function leads to Brownian
motion has been formalized in [11], considering a multiplication of the memory function of
an arbitrary time correlation function by a scaling factor λ > 0. It follows from the linearity
of the Laplace transform that M̂(s) → λM̂(s) (the index U is omitted), and introducing the
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normalized autocorrelation function

ψ(t) =
〈v(t)v(0)〉

〈v2〉 (14)

the inverse Laplace transform of (2) may thus be expressed as

ψλ(t) =
1

2πi

∮
C

ds
exp (st)

s + λM̂(s)
,

s→s/λ
=

1
2πi

∮
C′

ds
exp (sλt)

s + M̂(λs)
. (15)

The contours C and C′ include the singularities of ψ̂(s) and ψ̂λ(s), respectively. One sees
that ψλ(t) is obtained in two steps:

1. The memory function is modiˇed according to

M(t) → Mλ(t) =
1
λ

M

(
t

λ

)
, (16)

where one uses the scaling property of the Laplace transform, (1/λ)f(t/λ) ↔ f̂(λs).
2. The modiˇed memory function is used to evaluate the corresponding correlation

function on the time scale t → λt, which is ®stretched¯ if 0 < λ < 1.
For λ � 1, the memory function Mλ(t) will tend to a Dirac delta distribution,

Mλ(t) λ�1−→ γδ(t), (17)

where γ =

∞∫
0

dt Mλ(t) is the friction constant. It should be noted that the transforma-

tion (16) does not change the value of the integral over the memory function. On account of
relation (17) the correlation function will tend to an exponential function on the time scale λt,

ψ(t) λ�1−→ exp (−λγt). (18)

It must be emphasized that the limit λ → 0 cannot be performed formally, since the VACF
would not decay at all in this limit. Since the VACF is a classical autocorrelation function, it
is even in time and consequently ψ̇(0) = 0. The exponential behavior can thus not be true for
t → 0, since exp (−λγ|t|) is not differentiable at t = 0. As demonstrated in [11], the limiting
case of exponential decay of correlation functions must be considered on a coarse-grained
time scale

Δt = 2

∞∫
0

dt
M(t)
M(0)

, (19)

and the Brownian regime is attained if

Δt � 1√
M(0)

. (20)
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Equations (19) and (20) deˇne the regime of Brownian dynamics on the basis of microscopic
Hamiltonian dynamics. Note that the scaling of the memory function with λ < 1 Å as it
occurs with increasing mass of a tracer particle Å will not change the Brownian time step
Δt. It will, however, change the right-hand side of condition (20), such that it will be the
better fulˇlled the smaller λ is.

3. FRACTIONAL BROWNIAN MOTION IN PROTEINS AND WATER

Recent experimental and simulation studies have shown that fractional Brownian Dynamics
(fBD) is a good model to describe empirically the relaxation dynamics of proteins over an
extremely wide spectrum of time scales, ranging from picoseconds to seconds [12Ä17]. Here
the internal dynamics of proteins is considered, neglecting global translations and rotations.
The corresponding time correlation functions are characterized by a strongly nonexponential
decay and can be formally derived from the so-called fractional FokkerÄPlanck equations [18].
Taking the fractional OrnsteinÄUhlenbeck process as a dynamical model for the variable U(t),
one obtains for the normalized position autocorrelation function ψ(t) := 〈x(t)x(0)〉/〈x2〉,

ψ(t) = Eβ(−[t/τ ]β), 0 < β � 1, (21)

where Eβ(z) is the MittagÄLef�er function of order β [19] and τ deˇnes a time scale. The
series representation of Eβ(z) has the form

Eβ(z) =
∞∑

n=0

zn

Γ(1 + βn)
, (22)

with Γ(z) being the generalized factorial [19,20]. One recognizes that E1(z) = exp (z). The
fractional OrnsteinÄUhlenbeck process describes anomalously slow diffusion of a particle in a
harmonic potential. The harmonic potential ensures that the motion is bound in space, which
is necessary to describe atomic motions in proteins whose center of mass is ˇxed, and the
®anomaly¯ is re�ected in the nonexponential form of the autocorrelation function (21).

Various important properties of the time correlation function can be derived from its
Laplace transform

ψ̂(s) =
1

s(1 + [sτ ]−β)
. (23)

The Fourier spectrum of ψ(t), for example, can be expressed as ψ̃(ω) = 2�{ψ̂(iω)}, and one
obtains [16]

ψ̃(ω) =
2τ sin (βπ/2)

|ωτ | (|ωτ |β + 2 cos (βπ/2) + |ωτ |−β)
, (24)

where 0 < β � 1. The Laplace transform of the associated memory function can be directly
read off from (23),

M̂(s) = s(sτ)−β , (25)

and a carefully performed inverse Laplace transform yields [16]

M(t) =
β − 1

Γ(β) τ2

(
t

τ

)β−2

, t > 0. (26)
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Although M(t) becomes singular for t → 0+, the friction constant is zero

γ =

∞∫
0

dt M(t) = 0. (27)

Fig. 2. LogÄlog plot of the coherent dynamic structure factor of lysozyme as a function of frequency
for q = 10 nm−1. The solid line represents the simulation results; and the dashed line, the ˇtted fBD

model. The parameters of the ˇt are τ = 4.0 ps and β = 0.5

The above mathematical properties indicate that the memory function for fBD is a dis-
tribution and not a normal function. Figure 2 shows the Fourier transform of the coherent
scattering function of lysozyme, which has been obtained from MD simulation (solid line), as
compared to a ˇt of the fBD model (broken line). The details are described in [16]. The co-

herent scattering function is deˇned by F (q, t) ≡ cUU (q, t), where U(q, t) =
N∑

j=1

exp (iqxj(t))

and xj is the x coordinate of atom j, assuming that the scattering system is isotropic. The
Fourier transform of F (q, t) is referred to as dynamic structure factor. The inset of Fig. 2
shows the associated memory function and the corresponding ˇt of expression (26). The
analysis has been performed by using an AR model with 400 poles and a sampling step of
Δt = 0.4 ps. One recognizes well that the overall form of the simulated dynamic structure
factor has the featureless form of the model spectrum and that the characteristic algebraic
form of the memory function is retrieved in the simulation results.

The fractal behavior of fBD on the time scale can be understood by using the scaling
properties of the corresponding memory function [21]. It follows from Eq. (25) that

M̂(λs) = λ1−βM̂(s) (28)



342 Kneller G. R. et al.

and using this relation in conjunction with Eq. (15) allows one to write

ψλ(t) =
1

2πi

∮
C

ds
exp (st)

s + λM̂(s)
,

s→s/λ
=

1
2πi

∮
C′

ds
exp (sλt)

s + λ1−βM̂(s)
.

Now one can again apply the same argument which has been used to derive the second line
of (15) from the ˇrst one, and iterating this procedure for n steps yields

ψλ(t) =
1

2πi

∮
C

ds
exp (st)

s + λM̂(s)
=

1
2πi

∮
C′

ds
exp

(
stλ

∑n−1
j=0 (1−β)j

)
s + M̂(sλ(1−β)n−1)

.

For 0 < β < 1 it follows that lim
n→∞

λ(1−β)n−1
= 1 and the geometrical series

∞∑
j=0

(1 − β)j

converges to 1/(1 − [1 − β]) = 1/β. Therefore we obtain ˇnally

ψλ(t) = ψ(λ1/βt). (29)

In contrast to normal Brownian dynamics, amplitude scaling of the memory function yields the
same time correlation function just on a different time scale. This explains why spectroscopic
techniques operating on very different time scales can reveal the same relaxation behavior.
Apart from an amplitude factor they all see the same memory function. In this context we
mention �uorescence correlation spectroscopy and quasielastic neutron scattering, which are
sensitive to relaxation processes on the submillisecond to the second range [13Ä15] and to the
pico- to nanosecond range, respectively [17].

Fractional Brownian dynamics is not a special property of proteins, but can also be found
as a component in the dynamics of ordinary liquids. As an example we consider the memory
function of the coherent scattering function of liquid (bulk) water, which has been obtained
by using the same parameters as in the analyses of the MD simulations of lysozyme discussed
above. The simulations of water have been performed for 256 water molecules in a cubic
box of edge length 1.9552 nm in the thermodynamic NpT ensemble at a temperature of
T = 300 K and a pressure of 1 bar, using the SPC/E potential [22] and Ewald summation
for long-range electrostatic interactions. Within the SPC/E model the water molecules are
treated as rigid bodies which are composed of point masses, carrying each an electric charge.
All simulations have been performed with the simulation program DL_POLY (version 2) [23],
using a simulation time step of 1 fs. Figure 3 shows that the memory functions for lysozyme
and water are almost identical for t � Δt. Here Δt = 0.4 ps is the sampling time step we
used in both cases for the AR analysis and which sets the resolution of the AR model. Within
the numerical resolution, the only difference between the memory functions for water and
lysozyme is the behavior at short times, which yields different friction constants. We ˇnd

γH2O = 2.05 ps−1, (30)

γlys = 0.07 ps−1. (31)
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Fig. 3. Memory function of the coherent dynamic structure factor at q = 10 nm−1 for lysozyme (solid
line) as compared to water (broken line). The inset shows the corresponding dynamic structure factors.

More explanations are given in the text

The latter value being close to zero is the another's indication for ®pure¯ fBD in lysozyme,
whereas γH2O > 0 indicates that there is an additional relaxation channel in water, which may
be attributed to diffusion of water molecules.

CONCLUSIONS

In this article we have demonstrated that the calculation of memory functions from MD
simulations of molecular systems allows one to discriminate between different dynamical
models in a more rigorous way than standard analyses of the associated time correlation
functions and their Fourier spectra. One obtains, in particular, a systematic description of
relaxation processes in complex systems. Using autoregressive analysis of MD trajectories
we have ˇrst revisited the old problem of Brownian dynamics. We have demonstrated that
the memory function of a tracer particle scales inverse proportionally with its mass and that it
is this effect which leads to the characteristic exponentially decaying velocity autocorrelation
function of Brownian dynamics when the mass is increased. The scaling behavior of the
memory function for normal Brownian dynamics has been opposed to the one for fractional
Brownian dynamics. We have in particular shown that in the case of fBD, scaling of the
memory function does not lead to a change of the form of the associated time correlation
function, but just to a change of the time scale for the latter. This re�ects the fractal character
of fBD and explains why spectroscopic techniques operating on very different time scales see
the same relaxation behavior. Using preliminary results from the analyses of MD simulations
of liquid water, we have demonstrated that fBD is also present in normal liquids, with an
additional relaxation channel due to unbound diffusion of the molecules. These preliminary
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results suggest, in particular, that the relaxation dynamics of proteins is strongly coupled
to the one of the surrounding solvent, and more detailed analyses will be published in a
forthcoming paper.
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