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Two original approaches for solution of elastic boundary value problems with domain decomposition
(DDBVP) using the symmetric Galerkin boundary element method (SGBEM) are presented. Each
approach is based on a variational principle, a difference between them consists in the treatment of the
coupling conditions which connect the solutions through an interface. The developed computer codes
are able to deal with curved interfaces in a domain decomposition problem discretized by non-matching
meshes of linear elements along the interfaces. The effectiveness of the methods is documented by a
numerically solved example.

IIpencT BiieHBI 1B OPUTHMH JIBHBIX MOAXOA M1 PELIeHUd Kp €BbIX 3 [ Y YHPYIOCTH C P 3[EJICHUEM
0011 cTell ¢ UCMOJIb30B HUEM CHMMETPUYHOTO METOH TIp HUYHBIX 37eMeHToB I jepkun . K Xnmplii moa-
XOl OCHOB H H OJHOM B DU IIMOHHOM IpPUHILHUIE, P 3HUL MEXJIy HHUMH COCTOMT B HUCIIOJIb30B HUH
00BbeIMHAIOINX YCIOBHI, KOTOpbIE COENUHSIOT pellleHHs uyepe3 HHTepdeiic (MHOXECTBO-p 3HENUTENb).
P 3p 60T HHBIE KOMIIBIOTEPHBIE KOHBI CIIOCOOHBI p OOT Th C KPHUBONMHEIHBIMH HHTepdeiic MU B 3 -
I 9 X OEKOMIIO3ULUH 00N CTH, IUCKPETU3HPOB HHOM HECOINT COB HHOM CETKOil JTMHEWHBIX 3JIEMEHTOB
BII0JIb UHTEp(eiicoB. D heKTUBHOCTb METOLOB IPOJEMOHCTPHPOB H H KOHKPETHOM YHCJIEHHO pelleH-
HOM TIpHMepe.

PACS: 02.70.Dh; 02.60.Lj; 02.70.-c

1. DOMAIN DECOMPOSITION

Let us consider an elastic body defined by a domain 2 with a bounded Lipschitz boundary
00 = I'. Let n denote the outward unit normal vector defined almost everywhere on the
boundary I". We confine ourselves only to an analysis in 2D continuum (plain strain).

In the domain decomposition methods [2], we start with a split of the domain 2. For the
sake of simplicity, let us consider a split into two non-overlapping parts Q4 and QZ, whose
respective boundaries are denoted as T and I'P, see Fig.1. There also exists a common
part of both boundaries, let us denote it by I'.. Considering the boundary conditions for
displacements u” and tractions t"7, n = A, B and the split of the boundary I'" due to them,
we can write the DDBVP for the Navier equation in the form

it (®) = cliyem, (0" (x)) = 0, x € Q" (la)
ul(z) = g{(z), zeTy, (1b)

t](x) = (Tan(z))i(u(2)) = b (z), = €Ty, (Ic)

ti(x) = —t7(x), ui(z)=ul(z), zeT,, (1d)
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Fig. 1. A domain decomposition problem

with the elastic stiffness tensor c;jx, 4,7, k,1 = 1,2, strain tensor ¢;4, traction operator 7
and further with the natural coupling conditions providing compatibility of displacements and
equilibrium of tractions (1d).

2. VARIATIONAL FORMULATION

The solution of (1) is constructed on a variational principle, based on the results of
the one-domain SGBEM variational formulation introduced by Bonnet [1] and adapted for
DDBVP by Vodicka et al. [4]. Let us introduce a functional of energy with Lagrange
multipliers £*(u®,u”, Xy, A¢), which is a function of displacements u“, u? and of the
Lagrange multipliers A, A;. Physically, they correspond to some displacements and tractions
at the interface. The functional E* can be expressed in the following form:

EMu?, uP A, \) = EA(u?) + EE(u®B) + EMu?, u® A, N, (2a)

where the functionals E{(u?) and EZ(uf) introduce the total energy associated to the
subdomains Q4 and Q7 respectively, with the exclusion of their interface boundary parts.
Namely, taking n = A, B,

El(u") = %/gij(u”)c?jklgkl(u")dv - /h;7 udS — /t;7 (u] —g')dS. (2b)
F"’l

Qn ry

The last term in Eq. (2a) introduces a form of interface energy, modified by Lagrange-
multipliers terms. It can be introduced by the relation

Eg\(uA,uB,tf,uf,)\u,)\t) = —/uzB (tf—i—tfa) dS+
.

+/(At)i (uf —uf') d5+/(Au)i (t* +t8)dS. (20)

T. Ie
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The functions t# and t? represent the tractions of the displacement solutions u* and u?,
respectively, calculated via the traction operator 7 y,.

The interface energy introduces additional unknowns — Lagrange multipliers to explicitly
set the interface conditions (1d). As will be shown in what follows, these unknowns can be
eliminated. Namely, if we put A, equal to u” and \; to t*, we obtain the following interface
energy:

ER(u? uP) = - /t;4 (uf‘ — ufg) ds, (2d)
I

which also reduces E* in (2a) to a new energy functional E¥(u?, u®).

Both introduced energy functionals can be used to solve the DDBVP (1), as their stationary
point provides the problem solution. This fact can easily be observed considering vanishing
variations of both functionals

SEMu? uB Ay, A; ou?t ou® 6., 00;) =0, (3a)
SEE(u?, uf; sut, su®) =0, (3b)

with virtual functions du?, du?, 6\, ;.

We can eliminate the volume integrals and restrict the virtual displacements to those
which satisfy the Navier equation (la) applying an integral representation provided by the
Somigliana displacement identity [3]:

du(z) = /UZ(%y)w?(y)dyS—/Tﬂ(af,y)w}?(y)dy& reQ (4)

T T

where U}, is the fundamental solution of the Navier equation associated to the elastic material
of Q"7 and T,?l represents the fundamental tractions, obtained from the fundamental solution

. . T . .
via the traction operator: T7(z,y) = (T yn(,)U"(x,y))" , T denoting the transpose matrix.
A similar representation can be introduced for the tractions pertinent to the virtual dis-
placements, namely

oty () = /TiZ*(fE,y)w?(y)dyS—/DZ(m,y)¢?(y)dyS, z e, (5)

rn rn

with T (2,y) = T qn(2)U" (2, ), D"(2,y) = T an(z)T"(z,y) and n"(z) being a normal to
an auxiliary curve passing through the point = at which the traction is evaluated.

The integral representations (4) and (5) can be, after a standard limit-to-the-boundary
process (which originates jumps in some integrals), substituted into variations (3) and (after
reordering the terms, change of the integration order, and introducing an operator notation
for simplicity) a matrix form of the resulting boundary integral equation systems can be
derived [4].

The boundary integral equation systems for searching the stationary point of the functionals
E* and EE, can be written in a matrix-operator form

3T AX = 7B, (6)
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which should be valid for any virtual vector function ®. The shapes of the matrix operators
depend on the chosen energy functional. The difference between the application of E* and
E® includes additional equations and additional unknowns for the formulation with Lagrange
multipliers.

For the use with SGBEM, it is convenient to leave the system in the weak form as it is
natural for Galerkin methods. Moreover, in the described form the property of the symmetry,
which have both integral operators is clearly visible. This property will also be proper to the
matrix obtained after discretization.

3. AN EXAMPLE

Let us consider a ring body (elastic constants: G = 10* MPa, v = 0.25) loaded by
four point tensile forces F. Due to the symmetry, only a quarter of the whole ring will
be considered for the numerical solution, see Fig.2,a. For the numerical solution, both
variational approaches, based on E* and EE, have been used, let us distinguish them
by A and R, respectively. The results contain data of three different boundary element
meshes along the interface: as the role of the subdomains 24 and Q7 in the used varia-
tional formulation is different, the first mesh contains N4 = 48 elements along I'. on the
OA-side and NB = 112 elements on the QPF-side, the second mesh has the numbers of
elements interchanged, i.e., NV A = 112, NB = 48, and the third mesh has the same number
of elements on both sides of the interface T',, N4 = NB = 48. For the R formulation
only the first and the third meshes are considered, as the other case, when NV A > NP leads
to numerically unstable results, see [4]. It should be noted that the non-conforming meshes
along a curved I, leads to interpenetrations and gaps between the approximated subdomains,
see Fig.2,b. Nevertheless, even in such a situation the above numerical procedures are able
to provide excellent approximations of the solution of the original problem.
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Fig. 2. The example: a) geometry description; b) a non-conforming mesh on the curved interface

The graphs contain the data obtained along the interface curve AB. Both displacements
and tractions nicely fit the known analytical solution, nevertheless differences in the dis-
tribution of the errors appear, see Figs.3, 4. While at the coarse meshes the distributions
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Fig. 3. Displacements and their errors: @) the fine mesh; b) the coarse mesh
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Fig. 4. Tractions and their errors: a) the fine mesh; b) the coarse mesh
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are relatively smooth, the fine meshes show a zigzag character in the interior of the inter-
face. The more apparent oscillations appear in the tractions close to the end points of the
interface zone both for the coarse and fine meshes. The error distribution of the Lagrange
multipliers of the A formulation in Fig. 5 even stresses the overall oscillatory behavior, espe-
cially \; confirms this known property from some finite element formulations with Lagrange
multipliers.

CONCLUSIONS

Two variational SGBEM approaches have been presented and their behaviours have been
compared in an example. The first observation leads to a statement that both of them can
be used with satisfactory results. Differences between them appear when we focus on the
evaluation of the errors in the interface. Due to the character of the interface conditions
and the type of their prescription, the numerical data at fine meshes always present some
oscillations. The magnitude of the oscillation peaks depends on the type of the used mesh
and on the form of the approach used.

The work is partially supported by VEGA, No. 1/1006/04 and by Spanish Ministry of
Science and Technology, No. MAT2003-03315.
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