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THE PROBLEM OF DNA CONDUCTIVITY
V. D. Lakhno1

Institute of Mathematical Problems of Biology RAS, Pushchino, Russia

The paper gives a review of experiments on a charge transfer in DNA and presents a discussion
of various theoretical approaches to the interpretation of the transfer phenomenon. It is shown that an
adequate mathematical description of the nonlinear dynamics of this transfer can be based on Holstein
Hamiltonian. The main results obtained for this charge transfer with the help of Holstein Hamiltonian
are presented. Special attention is given to conducting properties of homogeneous nucleotide chains. It
is demonstrated that regular and homogeneous chains are promising candidates for the role of molecular
wires in nanoelectronic devices.

„ ´ μ¡§μ· Ô±¸¶¥·¨³¥´Éμ¢ ¶μ ¶¥·¥´μ¸Ê § ·Ö¤  ¢ „	Š ¨ ¨Ì É¥μ·¥É¨Î¥¸± Ö ¨´É¥·¶·¥É Í¨Ö. �μ-
± § ´μ, ÎÉμ  ¤¥±¢ É´μ¥ ³ É¥³ É¨Î¥¸±μ¥ μ¶¨¸ ´¨¥ ´¥²¨´¥°´μ° ¤¨´ ³¨±¨ É ±μ£μ ¶¥·¥´μ¸  ³μ¦¥É
¡ÒÉÓ μ¸´μ¢ ´μ ´  ¨¸¶μ²Ó§μ¢ ´¨¨ £ ³¨²ÓÉμ´¨ ´  •μ²¸É¥°´ . �·¥¤¸É ¢²¥´Ò μ¸´μ¢´Ò¥ ·¥§Ê²ÓÉ ÉÒ,
± ¸ ÕÐ¨¥¸Ö ¶¥·¥´μ¸  § ·Ö¤ , ¢ÒÉ¥± ÕÐ¨¥ ¨§ £ ³¨²ÓÉμ´¨ ´  •μ²¸É¥°´ . �¸μ¡μ¥ ¢´¨³ ´¨¥ Ê¤¥-
²¥´μ ¶·μ¢μ¤ÖÐ¨³ ¸¢μ°¸É¢ ³ μ¤´μ·μ¤´ÒÌ ´Ê±²¥μÉ¨¤´ÒÌ Í¥¶μÎ¥±. ‘¤¥² ´ ¢Ò¢μ¤, ÎÉμ μ¤´μ·μ¤´Ò¥
¨ ·¥£Ê²Ö·´Ò¥ Í¥¶μÎ±¨ Ö¢²ÖÕÉ¸Ö ¶¥·¸¶¥±É¨¢´Ò³¨ ± ´¤¨¤ É ³¨ ´  ·μ²Ó ³μ²¥±Ê²Ö·´ÒÌ ¶·μ¢μ²μ± ¢
´ ´μÔ²¥±É·μ´´ÒÌ Ê¸É·μ°¸É¢ Ì.

PACS: 87.14.Gg; 72.80.Le

INTRODUCTION

Numerous experiments have revealed that the DNA conductivity can vary from the value
typical of dielectrics and semiconductors to that peculiar to conductors and superconduc-
tors [1Ä8]. Recall that DNA consists of four types of nucleotides designated as A (adenine),
T (thymine), C (cytosine), and G (guanine), which unite into complementary pairs in such a
way that nucleotide A always pairs with T , and nucleotide C always pairs with G. These nu-
cleotide pairs are arranged in a stack to form a DNA double helix. Nowadays long sequences
with a prescribed set of nucleotide pairs can be synthesized artiˇcially. Chains composed of
uniform pairs which could serve as molecular wires in nanoelectronic devices are of great
interest. In the majority of experiments on charge transfer in DNA, the charge is carried not
by electrons, but by holes. If a nucleotide in a nucleotide chain be freed from one electron,
the hole which would arise would have a potential energy U such that UG < UA < UC < UT .

Overlapping of electron π orbitals of neighboring pairs will lead to delocalization of the
hole over the chain and its capture by nucleotides with lower oxidation potentials. Since,
according to the above inequality, guanine has the lowest oxidation potential, the hole will
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travel over guanines, while all the other nucleotides will act as potential barriers. Since there
is a strong dependence of the DNA conductivity on the type of a nucleotide sequence, in
an effort to reveal some regularities in this dependence it may be proˇtable to consider the
mechanisms of charge transfer in homogeneous and regular sequences [4, 8, 9]. As is shown
in [10], charge transfer in such sequences can be described on the basis of Holstein model [11].
The aim of this work is to analyze temperature dependences of the charge mobility in regular
chains with the use of the results obtained for Holstein Hamiltonian. We will deal with the
cases of the band mechanism of charge transfer, and charge transfer by small-radius polarons
(SRP) and large-radius polarons (LRP).

1. SMALL-RADIUS POLARONS

To model quantum dynamics of a particle in a chain of N nucleotide pairs we will
proceed from Holstein Hamiltonian which was the ˇrst to consider the chain in which each
site presents a biatomic molecule [10, 11]:

H = ν
∑

n

(a+
n an−1 + a+

n an+1) + α′
∑

n

qna+
n an +

∑
n

P̂ 2
n/2M +

∑
n

Kq2
n/2, (1)

where a+
n , an are operators of the birth and annihilation of a charge on the nth site; α′ is a

constant of the charge interaction with the displacement qn of the nth site from the equilibrium
position; P̂n is an impulse canonically conjugated to the displacement qn, M is the effective
mass of the site; K is an elastic constant; ν is a matrix element of the charge transition from
the nth site to the n + 1 site.

According to [12], on condition that

tp � Δt � t0, t0 < ω−1, Δt � ω−1, (2)

ν2 � (EaT )1/2
�ω, (3)

where

tp ∼ �

ν
exp (1 + 2N̄)S, t0 ∼ �

(EaT )1/2
, Δt ∼

(
�

2

ν2t0

)
exp

(
Ea

T

)
, (4)

� = h/2π, h is the Plank constant; T is temperature; N̄ = exp(ω/T−1)−1, Ea = α′ 2/4Mω2,
ω = (K/M)1/2, S = α′ 2/(2Mω2

�ω), a SRP arises in the chain under consideration. The
dependence of the SRP energy Ek on the wave vector k is given by the expression

Ek = −2ν cos ka · exp{−S(. . . , Nk, . . .)} (5)

S(. . . , Nk, . . .) =
∑

k

(1 + 2Nk)γk/N

γk =
α′ 2

2Mω2
k�ωk

(1 − cos ka),

where Nk is an average number of the population of phonons with vector k; a is the
distance between neighboring sites; N is the number of sites (nucleotide pairs) in the chain.
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In inequalities (2), (3) tp is the time of tunneling of SRPs between sites, Δt is the time interval
between transitions, t0 is the time of a transition. Relations (5) describe narrowing of the
initial band of a charged particle caused by formation of a SRP. In the case of dispersionless
phonons we are dealing with (5), which yields the following expression for the SRP mass mp:

mp = �
2/2ν̃a2, ν̃ = ν exp (−S(1 + 2N̄)). (6)

So, narrowing of the SRP band is determined by the exponential factor in (6) which leads to a
large value of the SRP mass. The mobility of a SRP μ in the case of dispersionless phonons
was found by Holstein to be [11]

μ = eD/T, (7)

where:

D = ωa2 ν2

�2ω2

[
π

γ csch (�ω/2T )

]1/2

exp
[
−2γ th

(
�ω

4T

)]
(8)

for the case of T > Tt, γ = α′ 2/2Mω3
�, where Tt corresponds to the temperature at which

the lifetime of a SRP in the band state is comparable with the time of its transition to a
neighboring site.

For the case of T < Tt, Holstein found that

D = 2ωa2
[γ

π
csch (�ω/2T )

]1/2

exp
[
−2γ csch

(
�ω

2T

)]
. (9)

In the case of SRP existence, in the case of high temperatures, (8) yields a classical expression
for the mobility μcl:

μcl =
ea2ν2

�T

[
π

4TEa

]1/2

exp
(
−Ea

T

)
. (10)

So, in the SRP case under consideration, the temperature dependence of the mobility looks
as follows. At θ/2 < T � θ, where θ is the Debye temperature (in the dispersionless case
θ = �ω), a SRP makes hops activated by temperature and its mobility in this region grows
with growing temperature. At T � θ/2, the SRP motion has a band character, but the band
width quickly increases with decreasing T , which leads to the increase of the SRP mobility.
At very low T , the band width is independent of temperature and the temperature dependence
is determined by SRP scattering over the band and dissipative processes concerned with the
motion of a SRP over the chain. The temperature dependence of the mobility at T > θ is
determined by (10) and will be considered in general case in Sec. 4.

2. LARGE-RADIUS POLARON

A Weak Coupling LRP. In the case of Hamiltonian (1) under consideration, a weak
coupling LRP is formed on condition that [13]

ᾱ1/2 � �ω, |ΔE| < 4|ν|, (11)

where:

ᾱ =
α′ 2

�

2Mω
, ΔE = ᾱa

√
m

2�3ω
.
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The quantity ΔE stands for the polaron shift in the energy caused by the interaction with
phonons.

In this case, in order to calculate the mobility, it is proˇtable to use the quasi-classical
BlochÄBoltzmann theory based on the solution of the Boltzmann kinetic equation for the
electron distribution function fk:

dfk

dt
=

4πᾱ

�

T

�ω

∑
k′,q

|〈|eikx|k′〉|2δ(εk − εk′)(fk′ − fk), (12)

which is valid on condition that T/�ω > 1. The quantity εk = k2/2m represents the band
electron energy with the effective mass m = �

2/2νa2, and x = na is considered to be
continuous in the continuum approximation.

Solution of equation (12) yields the mobility μ equal to

μ = 2

√
2
π

e2
�

3ω

a m3/2T 1/2ᾱ
(13)

(where e is the electron charge) and speciˇes its growth as μ ∼ T−1/2 with decreasing
temperature.

At T < � ω, the chain conductivity has a nonohmic character and the equilibrium velocity
of a particle v in the electric ˇeld of intensity E is determined by Cherenkov radiation [13]:

v =

√√√√�ω

m
+

√(
�ω

m

)2

+ ξ2, ξ =
�ω

m

(
E0

E

)
, E0 =

ma

π�ω

α ′ 2

Me
. (14)

From (14) follows that the charge velocity decreases as the electric ˇeld intensity grows
which corresponds to a negative differential conductivity. In this case, the electron motion is
unstable and has a character of Bloch oscillations.

A Strong Coupling LRP. In the case of strong coupling, on condition that

ᾱ1/2 � � ω, |ΔE| < 4|ν| (15)

at T = 0, a large radius polaron is formed. At temperatures considerably lower to that of
the polaron decay, the polaron mobility depends on temperature only slightly and, according
to [14], is equal to

μ = 240ea2ν3ω10M5/γfα ′ 8, (16)

where γf is the friction coefˇcient in the semiclassical equations of the site motion (20). In
expression (16), a strong dependence of the mobility on the parameters ω and α′ is striking.
Notice that, according to [14], the mobility in the strong coupling limit is contributed by both
the dissipation over the chain and the Cherenkov radiation which is barrierless in the case
under consideration.

At temperatures close to that of the strong coupling LRP decay and still higher the system
dynamics becomes particularly complicated and any analytical expressions for the mobility
are lacking. The results of numerical calculations for this case are given in Sec. 4.
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3. GENERAL APPROACH TO CALCULATION OF THE MOBILITY
AT HIGH TEMPERATURES

As was noted above, at temperatures higher than that of the polaron decay, any analytical
expressions for μ are lacking. Since the polaron decay takes place at T > �ω, in these
conditions the site oscillations can be described by classical Langevin equations. We can
pass on to such a semiclassical description of the system ®a particle + phonons¯ under
investigation, if we choose the wave function of the system |Ψ(t)〉 as an expansion over
coherent states

|Ψ(t)〉 =
∑

n

bn(t)a+
n exp

⎧⎨
⎩− i

�

∑
j

[βj(t)P̂j − πj(t)qj ]

⎫⎬
⎭ |0〉, (17)

where |0〉 is the vacuum wave function and the quantities βj(t) and πj(t) satisfy the relations

〈Ψ(t)|qn|Ψ(t)〉 = βn(t), 〈Ψ(t)|P̂n|Ψ(t)〉 = πn(t). (18)

Dynamical equations for the quantities bn(t) and βn(t) resulting from (1), (17), and (18) have
the form

i�
dbn

dt
= α′βnbn + ν(bn+1 + bn−1), (19)

M
d2βn

dt2
= −kβn − γf

dβn

dt
− α′|bn|2 + An(t). (20)

Equation (19) are a Schréodinger equation for the probability amplitudes bn(t). To take into
account the dissipation processes, Eq. (20) involves the term γfdβn/dt responsible for friction
and the force An(t) with the following statistical properties:

〈An(t)〉 = 0, 〈An(t)Am(t + t′)〉 = 2Tγfδnmδ(t′). (21)

So, the site motion is described by Langevin equations.
With the use of (19), (20) a particle mobility can be calculated by Kubo formula

μ =
e

2T
lim
ε→0

ε2

∞∫
0

〈x2(t)〉 exp (−εt)dt, (22)

where 〈x2(t)〉 is the mean square of the particle displacement x(t) along the chain with x2(t)
determined by the relation

x2(t) = a2
∑

n

n2|bn(t)|2. (23)

This scheme for calculation of the mobility is computationally intensive, since it implies
averaging over a large number of realizations given by a solution of dynamical Eqs. (19),
(20). As applied to DNA, the results of such calculations are discussed in the following
section.
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4. CALCULATION RESULTS

The results obtained can be used to study the temperature dependence of the hole mo-
bility in regular nucleotide sequences. Since a nucleotide chain of any structure can be
synthesized, one can deal with highly diversiˇed types of the charge motion. For a homoge-
neous (PolyG/PolyC) sequence, the parameters, according to [10], take the following values:
ν = νGC = 0.084 eV, α′ = 0.13 eV/
A, ω =

√
K/M = 1012 s−1, ω′ = γf/M = 6 ·1011 s−1.

These parameter values correspond to a LRP. The mobility LRP of a strong coupling LRP cal-
culated by formula (16) for these parameter values at T = 0 will be μ = 5.7 · 10−2 cm2/V·s.
In this case, the temperature dependence of the mobility at T > �ω (�ω ≈ 7.7 K) calculated by
Kubo formula (22) takes the form [15]: μ = μ0(T/T0)−2,3, μ0 = 2.87 cm2/V·s, T0 = 300 K.
According to [16], the polaron decay temperature Tp in a (PolyG/PolyC) chain is Tp ≈ 20 K.
Kubo formula for this temperature yields μ ≈ 1.5 · 103 cm2/V·s. Most likely, this is the
maximum value of the mobility, which can have a hole in a homogeneous (PolyG/PolyC)
chain, since at T < Tp a LRP with low mobility (≈ 5.7 · 10−2 cm2/V·s) is formed. In a
regular (PolyGA/PolyCT ) chain with νGA = 0.089 eV, νAG = 0.049 eV, νA = 0.45 eV,
ν = νeff = νGAνAG/νA = 9.7·10−3 eV ≈ 10−2 eV inequalities (2), (3) are not fulˇlled either
even at very high temperatures (∼ 3600 K). So, a hopping mechanism of a SRP is not realized
in this case. In regular sequences of the form of (PolyGA1 . . . Ak−1/PolyCT1 . . . Tk−1) with
k > 2 this hopping transfer takes place. In particular, for chains with k = 3 condition (3)
leads to the requirement of T � 0.07 K. As distinct from homogeneous chains, in regular
chains the value of Tp is much larger.

In regular chains with k > 2, temperature dependences of the SRP hopping mobility,
which are characterized by several orders of magnitude variation of the resistance in narrow
temperature intervals (Sec. 1) take place.

These effects of salutatory growth or decrease of the particle mobility in a narrow tem-
perature range can be used in nanotechnologies in constructing various nanoposistors, where
they can serve as switches, heating controllers, nanoheat sensors, etc.

Notice that in the high-temperature range T > �ω, expression (10) for the mobility of a
SRP in a (PolyG/PolyC) chain can be obtained immediately from the mobility expression [17]

μ =
eL2Kt

T
, (24)

where Kt is the rate of charge transfer between neighboring guanine sites, which, according
to [18], has the form

Kt =
|Vba|2

�

√
π

ErT
eEr/4T . (25)

If in (24), (25) we put Vba = ν, Er = 4Ea, L = a, where Er is the medium reorganization
energy, Vba is the matrix element of the transition between neighboring guanines, L is the
transfer distance, expression (24) changes to expression (10).

As was, however, shown above, the condition for the formation of a SRP is not fulˇlled
in the case of a regular (PolyG/PolyC) chain, while the applicability of Marcus theory may
not be violated. In this situation the temperature dependence determined by (10) may have
Holstein form at T � �ω, however, the absolute value of the mobility may be different
from the Holstein one, since in this case instead of Ea (involved in (10)), expression (10)
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will contain its effective value, which obeys the inequality Ea,eff < Ea. Thus, Holstein
relation (10) determines minimum value of the mobility corresponding to complete relaxation
of a charge on guanine sites. If so, exact value of the mobility must be calculated on the
basis of the approach developed in Sec. 3.

For regular (PolyGA1 . . . Ak−1 / PolyCT1 . . . Tk−1) chains with k > 2, the mobility
values determined by (24), (25) and calculated by Kubo formula (22) must be close, since
in this case the conditions for the formation of a SRP are fulˇlled. Then, to compare the
results, we should replace the quantity Vba in (25) by its effective value Vba,eff obtained in
the superexchange theory:

Vba,eff =
VGAVAG

ΔEAG

(
VAA

ΔEAG

)k−2

,

where ΔEAG is the difference between the energies of holes localized on guanine and adenine.
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