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The successful deciphering of the human genom has highlighted an old challenge in protein science:
for most of the resolved protein sequences we do not know the corresponding structures and functions.
Neither do we understand in detail the mechanism by which a protein folds into its biologically active
form. Computer experiments offer one way to evaluate the sequence-structure relationship and the
folding process but are extremely difficult for detailed protein models. This is because the energy
landscape of all-atom protein models is characterized by a multitude of local minima separated by high
energy barriers. Here, we describe an algorithm that allows one to partially overcome this multiple-
minima problem. For this purpose a formulation of Lagrange’s equation of motion for proteins described
by internal coordinates is presented. Unlike in the previous work, not only velocities and accelerations
are described by bond length, bond angles and dihedral angles, but a complete formalism is presented
that includes also the positions of atoms and rotation vectors.

VYcnemHoe 1eKOAMPOB HUE TEHOM 4YeIOBEK BBIABUHYIO H IIEPBBIA IUT H CT pylo Ipobiemy H3y-
yeHus OenKoB: il OONBLUIMHCTB P CIIU(POB HHBIX MOCIENOB TEIBHOCTEH OENKOB Mbl HE 3H €M COOT-
BETCTBYIOIIIMIE CTPYKTYphI ¥ (pyHKIMH. TOYHO T K Xe MBI HE IIOHUM €M MeX HH3M, [0 KOTOpOMYy Oerok
HEepeXONUT B OMOIOTHYEeCKH KTHBHYIO (hopMy. KoMITbloTepHbIe 9KCIIepUMEHTbI HO3BOJISIIOT H HTH C110c06
BBIUKCIICHNS] COOTHOIIEHHS «ITOCIIEOB TEITbHOCTb—CTPYKTYp » M (DOJIUHT , HO OH CT HOBHUTCS Kp HHe
CITOKHBIM TP ONUC HUU MOAPOOHBIX Mojeneil 6enkoB. DTO MPOUCXOTUT MOTOMY, UYTO BHEPTeTHYECKHUii
7 HOW (T HOITHO TOMHBIX Mofeneil 6eJIKOB X P KTepHU3yeTcss MHOXKECTBOM JIOK JIBHBIX MUHHMYMOB, P 3-
JENIEHHBIX BbICOKODHEPIeTHYECKUMH O pbep MH. 311eCh NIPEACT BICH JITOPUTM, MO3BOJISIOIIMI U CTUYHO
MIPEOJIONETh 9Ty MpobIeMy MHOXECTBEHHBIX MHHIUMYMOB. C 3TOH 1enbio (hopMyTUpYIOTCS Yp BHEHHS JBHU-
xenud JI rp HX 11 GeJIKOB, ONMCBHIB €MbIX BHYTPEHHUMH KOOPIMH T MH. B oTinume oT mpenpiyruei
p GOTHI C TIOMOIIBIO IMHBI CBS3W, YIT CBS3M W JBYIP HHOTO yIJI HE TOJBKO OIMCHIB IOTCSI CKOPOCTH
U yCKOPEHHMS, HO M CTPOMTCS MOJHBIN (hOPM JIH3M, BKITIOY IOMIMI T KXKE MONOXEHHsS TOMOB M BEKTOPBI
Bp LIEHU.

PACS: 11.10.Ef; 45.20.Jj

INTRODUCTION

One of the most common and important classes of molecules in living systems are proteins.
Muscles and connective tissues are formed by them, and as enzymes, they catalyze and
regulate biochemical reactions in the cell. Greatly differing in size and structure, all proteins
are chemically linear chain molecules with the twenty naturally occurring amino acids as
monomers. Locally, regular elements like helices, sheets and turns are formed, but the
biological function of a protein is decided by its unique overall three-dimensional shape that
is specified solely by the sequence of amino acids.
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The sequence of amino acids that make up a protein is set in the genome. Hence, after
the successful completion of the human genome project one knows in principal the chemical
composition of all proteins in the human body. However, for most of the resolved protein
sequences one does not know the corresponding structures. Since proteins are only functional
if they fold into their specific shape, it is important to understand how the structure and
function of proteins emerge from their sequence of amino acids.

One possibility to unveil the sequence-structure (function) relationship are computer ex-
periments. Most proteins exist at room temperature in a unique structure that one can identify
with the lowest potential energy conformation. However, simulations at these temperatures
are extremely difficult for detailed protein models. This is because the energy landscape of
all-atom protein models is characterized by a multitude of local minima separated by high
energy barriers. This multitude of potential traps is at least in part due to the large number
of degrees of freedom in regular molecular dynamics simulations of proteins.

In many biophysical and biochemical simulations the motion of the atoms is constraint
and the number of degrees of freedom is less than 3N, where N is the number of systems.
In such a case it becomes advantageous to go to a set of internal coordinates that reflect
the true degrees of freedom of the system. An example are proteins, where the length of
chemical bonds and the bond angles fluctuate little, and therefore their movement can often be
neglected. In fact, the ECEPP force field Ref. [5] assumes explicitly such a fixed geometry,
and a configuration of a protein is described as a set of dihedral angles ¢, ¥, w (for the
backbone) and x’s (for the side chains).

The advantages of such an approach are obvious: the time evolution of much less variables
needs to be calculated. For instance, the pentapeptide Met-enkephaline has 75 atoms. In
Cartesian coordinates one has to solve 225 equations of motions, in internal coordinates,
however, only 24 equations of motion (assuming bond length and bond angles fixed as
assumed in the ECEPP force field). Consequently, attempts were already made earlier to
derive the equation of motions of a protein in internal coordinates. To our knowledge, the first
such an attempt can be found in Ref. [1]. However, the equations derived in this work are not
fully about internal coordinates as some variables are still expressed in Cartesian coordinates.
Here, we take up their approach and present a formulation that allows a formulation of the
equation of motion of a protein solely in internal coordinates. Most of the construction and
notation in our work follows Ref. [1]. We present both a general description that allows also
in principal for variable bond length or bond angles, and the simplified equations for the case
where these quantities are kept fixed.

1. DEFINITIONS AND NOTATIONS

An important instrument in our study is the unit vector which has only direction. Because
of the natural correspondence between unit vectors and points on the unit sphere one can
discuss directions using spherical trigonometry.

For instance, the unit vectors &, b and & are regarded as vertices of the spherical triangle
in Fig. 1. The angles «, 5 and «y € (0;7) between pairs of the vectors generate sides of this
triangle.

Since we will represent all torsion angles on the unit sphere, we need to distinguish convex
and concave dihedral angles. One way, according to Ref. [4], is to consider them as angles
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Fig. 1. Representation of unit vectors on the unit sphere

with a counterclockwise orientation. So, if the angle A € (—m; ) in Fig. 1 is positive, then
it poses the angle <I(f),é, ¢), as a dihedral angle between faces represented by pairs &, b
and 4, & in this counterclockwise order. We shall write A = <((&,4,b), if it is negative.
Note that we use here and otherwise in the text mathematical terms as defined and explained
in Ref. [6].

2. INTERNAL VARIABLES

Ignoring global translations and rotations our aim is to describe the internal motion of all
atoms in the language of internal coordinates. Let us suppose that the positions and motions
of all atoms of a molecular conformation are given in internal coordinates. In this case, a tree
structure on the set of all atoms follows, as the positions of the atoms can be described by
relations to neighbours. In this picture, atoms can be considered as nodes and bonds as edges
of the tree. Note that in order to complete the tree, some virtual intermolecular edges need
to be added. An appropriate elimination of edges (Steiner tree) keeps all nodes in a sparse
tree conformation. An arbitrary node is now chosen as the root of this tree and anchors the
system to a fixed point in the space. This origin has the position vector ry and needs to be
considered as an additional virtual node.

Each atom is connected with the origin by exactly one branch. The height of the node is
the number of elements in such a branch. Because every quantity arising in our expressions
corresponds to a node in particular branch only, it is indexed just by the height of the related
node.

We distinguish three internal coordinates for a node (i.e., atom) characterized by a vector
r; that points inside a given branch onto an atom r,, which has the global index «. The
first one is the torsion (dihedral) angle ®; = <I(—f'i_1,f'i,f'i+1), where f; = ﬁﬂ is the

1
unit vector for f; = r; — rj_1. So, Q(fi,l,fi,fiﬂ) = ®; + 7 according to the sign of ®;
(Fig.3). A change of ®; determines the rotation of the following part of the tree around the
line defined by the node and f‘i. The second variable is the bond angle w; between —f‘i and

fiﬂ. So, the angle between f'i and f‘iﬂ is ™ — w;. Its drift designs the rotation around the
1 . .

node and &; = Wei, where e; = fj11 X f; is a vector product. Finally, we have the bond
€
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length b; 1 = [|fi+1/|, which determines a shift to the next part of the tree and we can write
fir1 =bipafiia.

The index 7 grows from 1 at the origin level, across 2 at the root, to the height n, of
the last atom r,_ = T, of the branch (Figs.2, 3). The indexing is specified for each branch
separately. The three coordinates ®;, w; and b,y associated with the ¢th node on the branch
are not equivalent. The torsion angle ®; affects the positions of &; and f"prl, the vectors of
variables w; and b;41, and w; affects f"prl, but not vice versa. Several internal coordinates of
the same type are at a furcate node, but each one is on a different branch. So, our indexing
up the branch is still valid.

We need two more nonparallel vectors X and ¥ in addition to the origin to define the
positions of the atoms in space. These two vectors are chosen here without loss of generality
as perpendicular and of unit length. They define a Cartesian coordinate system together with

Fig. 3. Relevant vectors of the initial part of a branch (scheme)
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the origin O and the vector of the third coordinate axis Z = X x §. The position of any node
of a global index « and of a height n, is together with Cartesian coordinates defined by a
sequence of internal coordinates (®1, wy, ba, Po, wa, b3, ..., Ppn__1, Wn,—1, bn, ) along the
incident branch, where ®; = <(—¥, X, f'z), Dy = q(—%, f'z,f'g) and w; is the angle between
—X and f'z (Figs.2, 3). The first three coordinates ®1, w1, be anchor the system in space.
The nonfixed internal coordinates generate the set of all generalized variables.

3. THE HYBRID FORM OF THE EQUATIONS OF MOTION

We start from the Lagrangian equations of motion in the form

% (%) — ?)_z = 0 for any generalized variable 6, (D

. 00 1
where 6 = 5 Substituting Z <§mar§) — U for the Lagrangian function L we obtain

oU d (. or,\ . or, . or,
o= 3 o[ (05 G| = 3 mane @

aeDI6]

where U is the potential energy; « is the global index for atoms; m,, is the mass and T, is
— 2_

%"‘, io= 8a;a and D[g] is the set of global

indices of all atoms affected by the variable . Our goal is to express the right side of ( 2)

by internal variables only.

the position vector of the ath atom; r, =

Following the ideas of the authors of Ref. [1] with simplification applied in Ref. [3], one

ou
can obtain 20 as a sum of scalar products

_8_U: Z (kara/k)mai‘a,

o
aeD[P]
ou . .
—a—w = Z (ek X I'oc/k) maXra, (3)
a€D[w]
ou A .
—% = Z fieprimaie,
aeDIb]

where k is the height of the node associated with the generalized variable 6 (P, wy or b1
on the branch to each atom with a global number a € D [f]), the vector r, /; is given by
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Nag—1
Io = Z |:<(szz + &'Jiéi) X Tq/it bi1fii1 + 20 (f‘i X € X ra/i) +
i=1
+ (i)z? (fl X fi X ra/i) +c'ui2 (éi X € X ra/i)} +
Ng—1 1—1 . )
+2 30 3 (ki + ) ¢ (€ + 0181 ) x ra] +
i=2 m=1
Na—1 1 ) .
230 3 [(Pnken + ) X bigafia |, @)
i=1 m=1
.df . d*0 . .
where 6 = e ¢ = —, f1 =X, a x b xc stands for a x (b x ¢) and the members of all

sums are indexed along the branch to the ath atom. If any internal coordinate 6 is fixed, the
corresponding velocity 6 and acceleration 6 are zero. Our task is to express vectors in the
formulas (3) and (4) by internal coordinates.

Fixing bond length and bond angles, Eqs. (3) and (4) reduce to the simplified versions

_g_g = Z (fk X ra/k) mai"a (5)
aeD[P]
and
r, = nil {Cblf, X Tyt <i)i2 (fl X f‘i X I‘a/i)} + 2n§1 S [Cbmf‘m X ‘i)ifi X To/il - (6)
i=1 =2 m=1

4. EQUATIONS OF MOTION SOLELY WRITTEN IN INTERNAL COORDINATES

The Cartesian coordinates of f’i are the cosines of the angles between f} and X, ¥, z. These
cosines are (see Appendix)

f‘1(1) = (17070)01 o Ci,1 : (17070)T7
fl(2) :(17070)0001lel(lvovO)Tv (7)
fi(3) = (1,0,00C1-Co - C1---Ci-1 - (1,0,0) 7,

where 7' is the operation of transpose, the dot represents here and in the following matrix
multiplication, and the mth compose matrix is

— COSW, sin wyy, 0
Cm = —sinw,, cos ®,, —cosw,,cosP,, —sind,, (8)
—sinw,, sin®,, —cosw,,sin®,, cosd,,
as cos(m — Wy,) = — COS Wiy, SIN(T — wy,) = Sin wyy,, cos(P,, £7) = — cos P, and sin(P,, +
. o A A A s .
w) = —sin®,,. The initial angles are &y = <(—%,¥,%) = — 3 and arbitrary ®_; and

wo =w_1 = g are the angles between X and —§ or ¥ and —Z (Fig. 3).
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As we have (1,0,0)Co = (0,1,0) and (1,0,0)C_; - Co = (0,0,1), new compound
version of (7) is

100
=010 |C-Cz---Ci1-(1,0,00T =C1-C2---Ci_1-(1,0,0)7, (9
00 1

where the vector f; is identified with its arithmetical representation. One can write

fi=C1-Cy---Ci_1 - % (10)
extending this representation to the other vectors considered now as column matrices. As
1
(A u)x (A-v)= A-(uxv) holds for any orthogonal matrix A, we have & = ———— x
fii1 xf

1

sin wj

(f‘i+1 X f‘i) = Cy-C2---Cj_1 - [(C; - %) x X]. This relation can be simplified as

6, =C1-Cz---Ci_1 -y (11)

using that Gi; = (0, — sin ®;, cos ®;) 7. Similarly, ro/i = bivifita +bipafie+...+bn, fn,
can be written as
roi = C1-Cz---Cj-rot(rys), (12)

where I‘O'[(’I“a/i) = (bH_lIg + Ci+1(bi+213 + Ci+2(bi+313 + ... + Cna_g(bna_lfgﬁ—
bn,Ch,—1))...)% and Ig is the identity matrix of the third order.
Let us now define for non-negative integers ¢, j the cumulative compose matrix

Ci+1'Ci+2~'~Cj, if ¢ < 7,
¢,;=¢l-cl, ¢l Co---Cj= I3, ifi=j, (13)
cl-cf,--- cf,, ifi>j

These orthogonal matrices have several useful properties

C; ZQ:i_l,i, Ci-Cz---G :Q:O,iv

14
€y g = Cip, €L = (14)

All terms of (3) and (4) can now be written as
fi x ro/k = €o k-1 [)”{ X (Ck . rot(ra/k))] ,
8k X ro/k = Co k-1 [ﬁk X (Ck . rot(ra/k))] , (15)
fii1 = €0 1Ci - %
and
(éIiifi + C&iéi) X Yo =041 (<I>x i C&iﬁi) (e -rot(ra/i))} :

bitifiyr = €o,i-1Ci - bitaX,

@sz (f, X €; X I‘a/i) =1 _i X 03 X (Ci . ‘i)id)i rot(ra/i))} ,

(i)f (ﬁ X f‘i X ra/i) =Cp -1 >)A( X X X (C, : (i’iz rot(ra/i))} ,

d)f (éi X €; X I‘a/i) =1 [ﬁi X 03 X (Ci -d)iz rot(ra/i))] , (16)
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By fon + Omém ) x (Pifi + 9181) x rasi "= (Come1(Pm& + Dmlim) )
( )< ) xxan ™= ( )
x (eo,i_l (((bpz + oniy)  (C; - rot(rg /i)))) :

. ~ . N . -~ mgi . N . “ . “
((I)mfm + wmem) X bi+1fi+1 = (Cg7m_1(q>mx + wmum)) X (Q:()’i . bi+1X) .
As a scalar product of vectors a and b can be also written as a matrix multiplication
aT - b, and all matrices C; and ¢; ; are orthogonal, an additional reduction is obtained by

multiplication of the terms (15) and (16) in (3). This leads to our final equation of motion
that is now based only on the internal coordinates:

ou |
~3% = —%T Z Ck rot( a/k)) X M Ak, q,
aeD[®]
ou |
_a_w = ukT Z (Ck . I‘Ot(ra/k)) X Mok, o, (I
a€D[®P]
ou N
—55 = (@R Y mea.
a€eDIb]

Here we assume

ng—1
= Z Cx-1,i-1 {(q),i +&3ifli) x (Cj -rot(ray;)) + Ci - bis1%+

+ %%t x (Ci- 2bidi rot(rap) ) + % x % x (Ci- B rot(rap) ) +
+1; X 03 X (Ci -u')iz I‘Ot(I‘a/i))] +

Nnag—1 i—1

23 3 (@ tim1 (Pnk + Gmtin ) ) %

=2 m=1
x (Qkfl,rl ((d’iﬁ+@iﬁi) x (G 'mt(r“/i)))ﬂ +

Nag—1

2250 (€ s (b)) (€6 0s - Biax)] . (19)

i=1 m=1

Cumulative compose matrices €;_q ;,—; are endowed by two indices in the previous form.
But the first one is constant £ — 1 dependent on the height of the generalized variable 6.

5. NUMERICAL SOLUTION

Fixing again bond length and bond angles, the first equation of (17) together with (18)
simplify to

—— =xT Z Ck rot ra/k))

aeD[®]
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Nnag—1
X Mgy { Q:k—l,i—l [q)l)'\( X (Cl . rot(ra/i)) +X XXX (C, . @izrot(ra/i))} +

=1

[
—

Ne i—
+ 2

1=

™)

m=1

{(Q:k—l,m—l : ‘i’mfi) X (Q:k—l,i—l (‘I’zfi x (Cy 'rOt(ra/i))))} } . (19)

It is possible to solve the system (19) with numerical methods (see, e.g., Ref. [2]) as one
can express ®’s explicitly. Adapting conventional methods for solving systems of differential
equations we represent this system in a form

We need unambiguous identification of internal coordinates and variables. They are
identified by indices only within a particular branch. Hence, two different internal variables
with the same index can occur inside the same Eq. (19). Let now

Py ®(2) 10! ()
(.U(l) y W(g) yo ooy (.U(L) gaany W(N) (21)
ba) b2 b by

be a global indexing of triplets of internal coordinates and let
ri,T2,...,Ta,...,Tm (22)

be a global indexing of position vectors of the nodes (atoms). One triplet of internal variables

o ®)
inside a branch is defined as wj above. Each triplet W) is associated just
bit1 o)

with one node T,(,). Several triplets can be associated with the same furcate node. Let D[®]
be the set of all global indices of nodes, which are affected by internal variable ®. For two
internal variables ®(,y and @, is D[®(,)] N D[®(,] # @, if and only if ®(,) and P, lie on
the same branch. In a such case, is this intersection one of the intersecting sets (let us denote
@(L) < (I)(H) — D[@(L)] D D[@(N)])?

Let
—Ccoswy,) sinw,) 0
C(L) = — SiHW(L) COS (ID(L) — COS W) COS (ID(L) —sin @(L) (23)
— sinw(L) sin @(L) —cosw(L) sin @(L) COS (I)(L)
and

C(Ll) . C(Lz) te C(Lj—1)7 if Kk = L1 and \ = Ly,

I3, if K=\,
T T T : — — .
i) Clyay Clay %f)\—Ll and k = 15,

03, if D[® ()] N D[®y] = 2

where I3 and O3 are identity and zero matrices and (v1,t2,...,¢;) are global indices of
a sequence of successive triplets of internal coordinates increasing along the same branch.
Moreover, let

€ =94 C (24)

rot(ra/,‘) = (b(z,l)IS + C’(I‘Q)(b(w)fg, + C’(L3)(b(L3)I3 + ...
et C(L.v’—l)(b(tj—l)j?’ + b(tj)C(L]‘))) L)z, (25)
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where (¢1,t2,...,¢;) are indices of the increasing sequence of all successive internal coordi-
nates impacting against the ath node and starting from ¢; = ¢.
Let the actual interval variable ® = ®,,). We can rewrite Egs. (19) under this denotation

onto

_oU
0P ()

N
=Y d&" Y ma (Cp - rot(rayu)) X €y (X x (Cp) - rot(ray))) +
=1 aeD,,

N
+D %" D my (Cy - 10t(rayu)) X €y (& X % x (C,) - Tot(ras))) +
=1 a€D,,

N
+2) ) P@wXT Y ma (Cp rrot(raz) X (€ %) X
=1 @(A)<‘I>(,‘) OLGD;,H

X (€ (R % (Cpy -1ot(ras,))))  (26)

for D,, = D[®,)] N D[®(,y] and pp = 1,2,..., N.
Hence, one can replace these N differential equations of the second order by 2N equations
of the first order (20) that can be solved with standard techniques:

Py =), 27

N
D UHERT > mg (Cppy - rot(ragu)) X €y (X% (Cpy 1ot(ras))) =
=1 a€D,,

N

— Z\If(%)ch Z m, (C(P«) . rot(ra/u)) X Q:(M’L) (f( X X X (C(L) . rot(ra/b))) —
=1 aeD,,

N
=23 Y U TaRT D me (Cy rot(ray)) X (€ X)X
=1 ‘b(}\){@(,{) OCEDL,_L

X (€ - (X % (Cyy - rot(ras)))) — ou

a(I)(/L)

(28)

for Yy = (@(1), ey (I’(N), ‘If(l), ey W(N))T.

CONCLUSION

We have developed equations of motion for proteins that, unlike earlier forms, rely only
on internal coordinates. This is not only satisfying from a mathematical point of view, but
also allows a formulation of molecular dynamics solely in internal coordinates. As the «hard»
degrees of freedom are integrated out in such a description, this allows larger time steps. The
resulting faster sampling is a necessary condition for even simulation of small proteins (of
order =~ 50 residues).
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