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KOMIIBIOTEPHBIE TEXHOJIOTHU B ®U3UKE

GROBNER BASES APPLIED TO SYSTEMS OF LINEAR
DIFFERENCE EQUATIONS
V. P. Gerdt

Joint Institute for Nuclear Research, Dubna

We consider systems of partial (multidimensional) linear difference equations. Specifically, such
systems arise in scientific computing under discretization of linear partial differential equations and in
computational high energy physics as recurrence relations for multiloop Feynman integrals. The most
universal algorithmic tool for investigation of linear difference systems is based on their transformation
into an equivalent Grobner basis form. We present an algorithm for this transformation implemented
in Maple. The algorithm and its implementation can be applied to automatic generation of difference
schemes for linear partial differential equations and to reduction of Feynman integrals. Some illustrative
examples are given.

B mpeacT BAEHHOH CT The P CCM TPHB IOTCS CHCTEMbI JIMHEHHBIX MHOTOMEPHBIX P 3HOCTHBIX Yp B-
HeHuil. T Kue CHCTEeMbl BO3HHK [OT, B U CTHOCTH, B BBIYMCITMTEIBHON M TeM THKE K K JAHCKPETHbBIE Bep-
cuut (p 3HOCTHBIE CXEMBI M) JTHHEHHBIX AU(HEPEeHIN JTbHBIX Yp BHEHHI B 4 CTHBIX MPOU3BOAHBIX H B
BBIYUCITUTEIBHOM (DU3MKE BBICOKHX ®HEPIHil K K PEKyppPEHTHBIE COOTHOIIEHHS JUISl MHOTONET/IEBBIX (heii-
HM HOBCKHX HHTerp JjioB. H nbonee yHHBEPC JHHBIM JITOPUTMHYIECKHM METOIOM HCCIIEIOB HUS JIMHEH-
HBIX P 3HOCTHBIX MHOTOMEPHBIX CHCTEM SIBJISETCS MX HPeoOp 30B HHE K K HOHHYECKOH SKBHB JICHTHON
topme, H 3b1B emoii 6 3ucom I'pebuep . IIpencT BjeH JTOPUTM 3TOTO MPeodp 30B HUS, Pe JIM30B HHBI
B BUJE NPOrp MMbI H si3bike Maple. | HHBI JITOPUTM M NPOrP MM MOTYT OBITh HCIIONB30B HBI IS

BTOM THYECKOH TeHep MM P 3HOCTHBIX CXEM I JIMHEHHBIX yp BHEHHH B U CTHBIX NMPOM3BOIHBIX U
T penyKuuu (peiiHM HOBCKMX HHTErp J0B. B p 00Te NMpHBEIEeHbl MILUIIOCTP THBHBIE HPUMEPHI T KOO
HCIIONB30B HHUSL.

PACS: 02.70.Wz; 02.60.Lj
INTRODUCTION

Let N and N> be the sets of positive and nonnegative integers, QQ be the set of rational
numbers, YV := {y/(21,...,2,) | 5 = 1,...,m m,n € Nug} be the set of functions in
n variables, and 6; be the right-shift operator for the ith variable: 6; o y(z1,...,z,) =
y(z1,...,z;+1,...,2,). For the power products 6" - - - 0#» of the shift operators we shall
use the multiindex notation 0%, where p := {p1,..., pn} (n € NZg) with i := qui' The
set of all such operator products will be denoted by ©.

And then the most general form of a system of K € N5 partial (n > 1) and multivariate
(m > 1) linear difference equations is given by

ag+ Y Y arsdioy =0,  k=1,...K = 9 €0, (1)

Jj=1 v

where all sums are finite and coefficients ag, axj,, may depend on the variables X :=
{x1,...,2,} and on a finite set of parameters C' := {c1,...}. Hereafter we shall assume
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that all coefficients in (1) are rational functions of the variables and parameters with integer
coefficients:

ao, Akj, v € Q(X U C) 2)

This restriction on the coefficients allows one to apply algorithmic technique of the next
section.

It is well known that, except very simple cases, systems of form (1), (2) do not admit
exact solutions and are rather poorly studied in the literature [1]. However, such systems play
a fundamental role in a number of important applications, for instance in:

Scientific Computing. Numerical solving of linear partial differential systems [2] with
rational function coefficients. Recently, it was observed [3] that one can automatically generate
finite-difference schemes for such partial differential equations (PDEs) by eliminating partial
derivatives from certain linear partial and multivariate difference systems. In so doing, for
homogeneous PDEs whose coefficients may also be rational functions of parameters one deals
with systems of form (1), (2) with ag = 0.

Computational High Energy Physics. Reduction of multiloop Feynman integrals [4].
These integrals, after a proper fixed right shift of the variables in X, satisfy the univariate
system of partial difference equations (recurrence relations) [5] whose rational function coef-
ficients depend on such physical parameters as the space-time dimension, masses and external
momenta. The problem is to reduce the integrals to be evaluated to a minimal set of basic
or master integrals, i.e., those integrals which are independent modulo the difference system,
and then to express other integrals in terms of the basic ones.

Computational Economics. Characterization of economic behavior in macroeconomics [6].
Here for some macroeconomic problems one has to solve the system (1) with constant
parametric coefficients.

To investigate or to solve difference systems (1) with rational coefficients (2), one can use
the universal algorithmic Grobner bases method invented about 40 years ago by Buchberger [7]
for systems of multivariate commutative polynomials generating polynomial equations [8].
The main idea of this method is to rewrite the initial system of equations into a certain
equivalent form called a Grobner basis which makes easier investigation of the system and
its solving. The underlying Buchberger algorithm [8] is built in all modern general-purpose
computer algebra systems such as Maple, Mathematica and others.

On the basis of research made to date, the Grobner bases theory was extended to some
«weakly» noncommutative polynomials as well as to linear differential or difference polynomi-
als and operators [9, 10]. Generally, however, the noncommutative and nonlinear differential
or difference Grobner bases may not exist (be infinite). For difference systems (1), (2) Grobner
bases are always finite and can be constructed by Buchberger’s algorithm straightforwardly
translated to difference algebra [10].

Recently [3,11] we have presented the difference form of our polynomial algorithm devised
in [12], improved in [13] and specialized to the so-called Janet and Janet-like monomial
divisions [14] which go back to the constructive ideas of French mathematician Janet [15].
The algorithm constructs a Janet(-like) basis [14] which is also a Grobner basis. Though
generally Janet bases [12] and Janet-like bases are redundant as Grobner ones, the algorithm
in its improved version [3,13] allows one also to output reduced Grobner bases without any
additional computational costs. The implementation [16] of the algorithm in Maple allows a
user to compute linear difference Janet(-like Grobner) bases.
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In the present paper we describe briefly a simple version of the Janet division algorithm
(Sec. 1) and consider its application to the above-listed problems from scientific computing
(Sec.2) and computational high energy physics (Sec.3). Both problems are purely algebraic
and can be completely solved with the use of Grobner bases. We illustrate this fact by simple
examples. Our presentation is addressed to non-algebraists. For this reason we slightly abuse
algebraic terminology and refer to the references in bibliography for more precious definitions
and notions.

1. TRANSFORMATION TO GROBNER BASIS

In this section we define the concept of a Grobner basis form for the difference system (1),
(2) and present an algorithm for its computation. The Grébner basis form of the system (1)
is defined by a ranking >~ (linear order on) of terms §* o y7 and such that for all i, j, k, , v
the following holds:

0;0" oy’ = 6" oy, 0" oyl = 0V oyt —= 0;0" oy’ = 0;0" oy,

If |1 = |v| = 0" o y? = 6" oy*, the ranking is called orderly. If j > k = 0oy’ = 6V oy,
the ranking is called elimination.

Denote by fj the left-hand side of the kth equation in (1) and by F := {fi1,..., fx}
the set of all the left-hand sides in the system. Fixing a ranking > provides every f € F
with the leading term 1t(f) := a¥ oy’ (¥ € O, a # 0) and leading coefficient 1c(f) = a.
Furthermore, denote by R O F' the set of all right-hand sides f # 0 for linear difference
equations f = 0 which are consequences of the system (1), (2). F' is called generating set
or basis of R (denotation: R = (F')). In what follows we shall assume that, given a ranking
>, all f € R are normalized, that is, divided by their leading coefficients. If F' C R, then
1t(F") will denote the set of the leading terms and 1t;(F') will denote its subset for function
y7. Therefore,

1t(F) = 0 It (F).

Now we are ready to define a Grébner basis for given F' and ranking > as a finite subset
G C R = (F) such that R = (G) and

VfER,3ge G, 0€0 : lt(f) =00lm(g). 3)

It follows that the leading term of every f € R is reducible modulo G and yields the head
reduction:

fof=f-009, [ER

If f' # 0, then its leading term is again reducible modulo G. And then by repeating the
reduction finitely many times [8—10] we obtain f ? 0. Generally, if a linear difference

expression i (not necessarily from R) contains a term u with coefficient ¢ # 0 such that
u=colt(f) for some ¥ € © and f € ' C R, then h can be reduced:

h—h:=h—cdof. 4
g
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By applying the reduction finitely many times, one obtains a polynomial ~ which is either
zero or such that all its (nonzero) terms are irreducible modulo set F. In both cases h is
said to be in the normal form modulo F (denotation: h = NF(h, F')). A Grébner basis G is
called reduced if g = NF(g,G \ {g}) for every g € G.

In our algorithmic construction of reduced Grobner bases we shall use a restricted set of
reductions called Janet reductions (cf. [13]) and defined as follows.

For a finite set ' and a ranking -, we partition every set ltx(F') into groups labeled by
do,...,d; € N3 (0 <i < n). Here [0]x := Ity (F) and for ¢ > 0 the group [do,...,d;]x is
defined as

[do,...,di]k = {’LL € ltk(F) ‘ do = O,dj = degj(u),l <j < i},

where deg; (0" o y*) := ;. Operator 0; is called J(anet)-multiplicative for f € F if It(f) €
[do,...,d;—1] and deg,(u) = max{deg;(v) | v € [dp,...,d;—1]}. Denote by M;(f, F) the
set of J(anet)-multiplicative shift operators for f € F, the complement set {61,...,0,} \
M;(f, F) of J(anet)-nonmultiplicative shift operators by NM;(f,F) and the set of all
possible power products of J-multiplicative operators (including identity operator) by J(f, F').
It is clear that J(f, F') C ©.

A finite set G € R = (F') is called a Janet basis (cf. [13]) if
VfeR,3gcG,0€J(g,G) : It(f) =00lt(g). 5)
Similarly to (4), a J-reduction is defined as

h—h :=h—cdof, 9eJ(fF), (6)
g

for a polynomial i € R containing a term v with coefficient ¢ # 0 satisfying u = ¢ o 1t(f)
for some f € F and ¢ € J(f, F).

Since J-reducibility (6) implies the Grobner reducibility (4), a Janet basis satisfying (5)
is also a Grobner basis. The converse is generally not true; that is, not every Grobner
basis is a Janet one. The algorithmic characterization of a Janet basis G is the following
condition (cf. [13]):

VYge G, € NM(g,G): NF;(0og,G) =0, (7)

which is a cornerstone of the below algorithm for construction of Janet bases (3).

This algorithm is a translation (with some minor modifications) of the polynomial algo-
rithm in [17] into the difference case. Due to the normalization of i done at Step 15 before
insertion of h into the intermediate basis GG, the algorithm outputs the minimal and normalized
Janet basis which is uniquely defined by an input difference system F' and a ranking [12].
Correctness and termination of the difference algorithm immediately follow from those for its
polynomial counterpart [12,13]. Algorithm JanetBasis implemented in its improved form [3]
as the Maple package LDA (abbreviates Linear Difference Algebra) [16], and in the next two
sections computation with the package is illustrated by examples.
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Algorithm: JanetBasis (F, )

Input: F, a finite linear difference set; >, a ranking
Output: G, a Janet basis of (F')
1: choose f € I with the lowest 1t(f) w.r.t. >
2 G = {f}
3 Q:=F \ G
4. do
5: h:=0
6: while Q # () and h =0 do
7: choose p € ) with the lowest 1t(p) w.r.t. >
8: Q:=Q\{p}
9: h:= NFJ(p,G)
10:  od
11:  if h # 0 then
12: for all g € G such that 1t(g) = 0" o 1t(h), |u| > 0 do
13: Q:=QU{g}; G:=G\{g}
14: od
15: G:=GU{h/lc(h)}
16: Q:=QU{0log|geG, 0°c NM,;(g,G)}
17: fi
18: od while Q # ()
19: return G

2. GENERATION OF DIFFERENCE SCHEMES

In paper [3] an algorithmic approach was developed to construct finite-difference schemes
for linear PDEs in two independent variables and on uniform orthogonal grids with possibly
distinct mesh steps for  and y. We outline here the main idea of the approach and refer
to [3] for more details. In so doing, we restrict our consideration by scalar equations of order
> 2 which admit the conservation law form

ov. oW
— + = =0, 8
50 T oy ®)
where V' and W are functions of independent variables z,y, dependent variable u(z,y) and
its partial derivatives g, Uy, Ugz,... The differential equation (8) can be rewritten in the
integral form
f—WdaH—de =0, 9

T
which is valid for arbitrary closed contour I'. Discretization of (9) instead of (8) is natural

for preserving the conservation law at the discrete level (conservative scheme).
Denote the grid values of function u(z,y) and its derivatives by

ik = u(wy, k), (Ue)jr = Ue(Th,yx),  (Uy)jr = uy(Tj,yn),

(uxa:)jk: = um($j,yk),~-~, (10)
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and fix some integration contour I' in (9) on the grid. To be specific, let us choose a simple
rectangular contour as shown in Fig. 1.

Now we add to the integral equation (9) for the rectangular contour of Fig. 1 all the related
(exact) integral relations between u(x,y) and its partial derivatives:

Tjt42 Yk+2
ugdr = u(ijr?v y) — ’LL(.’Ej, Y) uydy = u(@, Yrt2) — w(z, Yi) ,
zj Yk
Tj42 Yk+2 (1 1)
Uy dr = Uw(xj+27y) - Uz(%‘,y) y /Uzydy = Uz($,yk+2) - Uw(xvyk) 5
Tj Yk
k+2 Our purpose is to obtain a difference scheme for u;; from a proper

discretization of integral equations (9) and relations (11). To do
that one should use as many relations in (11) as the number of all
k+1 proper derivatives of w up to the maximal orders of their occurrence
in the integrand of (9). Then the difference scheme can be obtained
by an algebraic difference elimination of all discrete proper partial
k* - : derivatives in list (10) from the combined system (9), (11). The
/ j* j*2 algebraic elimination can be achieved by computing a Grébner or
Janet basis for the last system and a suitable elimination ranking (see
Sec.2) satisfying w;p < (Ug)jr < (Ugz)jk < ...

Therefore, to construct an initial system of discrete equations
for the following difference elimination, it suffices to approximate
numerically the contour integral (9) for the chosen contour of Fig. 1 together with the integral
relations (11) in terms of the grid unknowns (10). For this purpose one can choose various
quadrature formulas for these integrals, and the difference scheme obtained may depend on
the choice. For simplicity sake we apply here for all the integrals in (9) and (11) the simplest
rectangle (midpoint) rule:

Fig. 1. Integration con-
tour on grid

Wit1kt+2 = Wis1)hi + (Vigak41 — Vigs1)ha =0,
(Uz)jr1k2h1 = Ujpok — Ujks (12)
(uy)jkt12he = Ujpyo — Ujk,

where hy := x;11—x; and hy := yr41 — i are the grid mesh steps for our uniform orthogonal
grid.

For linear difference system (12) Janet (Grobner) basis exists for any ranking, and, hence,
the elimination can be performed by applying the above algorithm JanetBasis. To illustrate
this algorithmic procedure for the difference schemes generation, consider a simple example
of the Heat equation in its conservation law form [3]:

Ut + QUzy = 0 = f—auwdt 4+ udx = 0, (13)
r
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where « is a symbolic parameter. The integrand in (13) contains the only partial derivative
u,. Hence, we need to add the only integral relation

Tjt1
/uxdx =u(Tjy1,t) —ulzj,t). (14)

zj

Now consider u(z,t) and u,(x,t) on the uniform orthogonal
grid with the spatial mesh step h and the temporal mesh step 7, and
choose the simplest contour shown in Fig.2. As this takes place, we
can approximate the integral of u,(z,t) over x in (13), (14) on the
grid points by the rectangular or trapezoidal rules.

Then, applying the midpoint rule for the contour integral and
the trapezoidal rule for the relation integral, we find two difference " j J+1 j+2
equations for two dependent variables u, u,:

n+1

Fig. 2. Integration con-
(1460, — 602 —0,02) oy —2h (0,0, — 0,) ou =0, tour for the heat equation

al
- (15)
5(9I+1)ouz—(9z—1)ou:0.

Furthermore, we show how to generate a finite-difference scheme for the Heat equa-
tion (13) by using the Maple package LDA [16]:

> with(LDA):
First, we enter the independent and dependent variables for the problem.
> ivar := [j,k]; dvar := [ux,u]:

Second, we translate (15) into the input format of the main command JanetBasis in the
package.

> Li=[axt/2%(ux(§,k)+ux(j+1,k)-ux(j,k+2)-ux(j+1,k+2)) -
> 2xh*x(u(j+1,k+1)-u(j,k+1)),
> h/2*(ux(j,k+1)+u(j,k)-u(j,k+1)+u(j,k))]:

Third, we compute the (minimal) Janet basis for L w.r.t. an elimination ranking with u, > u
to eliminate the partial derivative u, from the system (15). This ranking is chosen by using
option 2 as below; in so doing we output only the element in Janet basis which does not
contain .

> JanetBasis(L,ivar,dvar,2)[1][1];

—2atu(j,k+1)+hatu(j,k)+2atu(j,k)+2atu(j,k+3)—hatu(j,k+2)
—2atu(j,k+2)+ 2atu(f+1,k+3)—hatu(j+1,k+2)—2atu(j+1,k+2)
+4h?u(j+1,k+2)— 4h%*u(j,k+2) —2atu(j+1,k+1) +hatu(j+1,k)
+2atu(j+1,k)
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Thereby, we obtain the classical Crank—Nicolson scheme

Jj+1 J Jj+1l _ Jj+1 Jj+1 J _ J J
w,  —u (Upyy — 2wy, +up )+ (upyy — 2up +up )
+ « 3
T 2h

:0’

if in the above Maple output one shifts the second index by —1 and uses the first index as a
superscript. The same scheme is also obtained for the midpoint integration method applied
to (14).

3. REDUCTION OF FEYNMAN INTEGRALS

Evaluation of Feynman integrals is the cornerstone step of perturbative computations in
elementary particle physics [4]. Consider, for example, a typical scalar L-loop integral with

E external legs:

1
I(l/la"'ay’n):/ddkl"'ddkL n ) (16)

[1 Dy’
Jj=1

which corresponds to n internal lines in the related Feynman diagram. Integration for every
loop momentum k; is done over the space-time of dimension d = 4 — ¢, where ¢ is the
parameter of dimensional regularization [18]. The denominator D; for the jth internal line
with mass m; is given by D; := p5 —m7. Here the line momenta p; are linearly expressed

J
in terms of the loop momenta k; (¢ = 1,..., L) and external momenta ¢; (s = 1,...,E) as

L E
by = Zajsks + Zﬁjtqtv ajsvﬁjt S @
s=1 t=1

Consider the combined set of L + E vectors

] ka, a=1,...,L,
"o\ oz, a=L+1,...,L+E.

P Recurrence relations for integral (16) are derived by the
integration-by-parts method [5], whose main idea is to use
the integral identities (cf. [4, 19])

q q ) A
/ddk1~-~ddk,;8k nr] -0 (17)
i
k=1
ktq together with the d-vector identities
Fig. 3. One-loop propagator diagram 2piq; = (pi +q;)* — (p} —m?) — (qj2 +m?).  (18)

Integral identities (17) follow from an observation that any integral of 0/0k;(...) vanishes
since there are no surface terms in dimensional regularization (cf. [20]).
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As a simple example consider one-loop propagator diagram of Fig. 3 with external momentum
q and with one massive and another massless internal lines. This example was studied, for
example, in [4,21] and used already in [16]. The corresponding Feynman integral (16) is
given by

I(l/1, 1/2) = %, D1 = (/C + Q)Q, D2 = k2. (19)
In accordance with (17), there are two independent integral identities. Their integrands are
9 k1 {;L __2yﬂk2%—q-k)_>mqk2]
Ok D' D3? D*D3? | Ok Dy Dy |’
0 q 1 2v1(k+q) 2wk
ok DV'DY: ~ DYiD q{_ D. D, }

Taking into account the identity 2k - ¢ = (k + q)? — (k* — m?) — (¢® + m?) of the type (18)
and equality 9/0k - k = d we obtain the difference system

{ [d — V1 — 21/2 — 1/1919571) + lll(q2 - m2)91 — 2m21/292] OI(I/l7 1/2) = 07

(1 — va +1v1(q* — m?)6; — 1/1919571) + 1/29571)92 —v2(¢* +m?)0s] 0 Z(v1,12) =0,
(20)
where 95_1) and 95_1) denote the left-shift operators for indices 17 and vs, respectively.
Now we construct the minimal set of master or basic integrals for the two-indexed fam-
ily (19) of Feynman integrals by applying the Maple package LDA [16] with the input
denotations k :=vq,n:=wvy and f(k+ 1,n+ 1) :=Z(v1,10):

> idvar:=[k,n]: dvar:=[f]:

Then, we enter the recurrence relations (20).

L:=[(d-k-2*n)*f (k+1,n+1) —kxf (k+2,n) +k* (q~2-m"~2) *f (k+2,n+1) -
2xm” 2*n*f (k+1,n+2),

(k-n)*f (k+1,n+1) +k*(q"2-m"~2) *f (k+2,n+1) ~k*f (k+2,n) +n*f (k,n+2) -
n*(q~2+m~2) *f (k+1,n+2)]:

VvV V V V

As the next step we compute a Janet basis for an orderly ranking (Sec. 1) induced by
01 = 65.

> JB:=JanetBasis(L,ivar,dvar):

In order to compute the set of master integrals we have to take into account that Z (v, v5) =
0 for vo < 0 [4,20]. This extra boundary information is input as

> AddRelation(f(k+j,n)=0,ivar,dvar):

Master integrals are those f(k,n) which are independent modulo all the consequences R
(see Sec. 1) of (20). Thereby, the master integrals are easily determined via the leading terms
of the Janet basis. Namely, one has to determine those f(k,n) that are not expressible as the
action of a power product 07" 65> (11,2 € N>o) on a leading term in the Janet basis (cf.
definition (3)).
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The set of master integrals is computed by invoking the command:

> ResidueClassBasis(ivar,dvar);
[f(k,n+1), f(k,n+2), f(k+1,n+1)].

Now any integral f(k + i,n + j) can be explicitly expressed as a linear combination of
the master integrals whose coefficients are rational functions in parameters d, ¢> and m?2. The
explicit expression is obtained algorithmically by applying the Grobner or Janet reductions
described in Sec. 1. In LDA the Janet reductions are performed. To show the output of such
an expression for f(k+ 3,n+2) and make the output more compact, we let m = 0 and show
the underlying piece of the Maple code:

> m:=0: J:=JanetBasis(L,ivar,dvar):
> AddRelation(f(k,n+j)=0,ivar,dvar):
> ResidueClassBasis(ivar,dvar);

[f(E+1,n+1)
> InvReduce(f (k+3,n+2),J,"F");

—((d-—2-2k—-2n)(d—4—-2k—-2n)(d—2—k—n)(d—3—k—n)(—n—2k+d)x
xflk+1,n+1))/(¢°(k+1)(—2k+d—4)k(—2k—2+d)n)"L.

In the massless case (m = 0) a new extra relation f(k,n + j) equivalent to the boundary
condition T (v1,v2) = 0 for v; < 0 is added that yields the only master integral f(k+1,n+1).
The last command invokes the LDA procedure that computes the J-normal form of f(k +
3,n + 2) modulo the Janet basis. This normal form just represents f(k + 3,n + 2) in terms
of the master integral. Option «F» provides factorization of the numerator and denominator
in the output rational function coefficient. It should be noted that, since integral Z(vq, 2) is
non-vanishing only when both its indices are positive, the master integral can be identified
with Z(1,1).

CONCLUSION

We have shown above that the Grobner bases technique can be applied to generate
difference schemes for linear PDEs and to reduce multiloop Feynman integrals. Each of
our simple illustrative examples of Secs.2 and 3 needs less than 1 s of computing time on
a 1.7 MHz personal computer with 512 Mb RAM. Larger examples, however, can require
much more computer resources since complexity of a Grobner basis computation is at least
singly exponential, and may be even doubly exponential, in a number of variables [9,22].
Besides, blowing-up of intermediate coefficients, especially in the presence of parameters, as
in the case of recurrence relations for Feynman integrals, is a serious obstacle in the practice.
That is why to apply Grobner bases to multivariate and multiparametric problems, one has
not only to optimize and improve the underlying algorithms and data structures, but also to
implement them in lower level languages than Maple or Mathematica. Our Janet division
algorithms [13] have already been implemented in C and C++ (see the Web page [23]) for
commutative polynomials, and extension of these codes to differential and difference equations
is planned for the coming years. As argued in [21,24], differential Grobner bases can also
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be applied to reduction of Feynman integrals. A practical specialization of the Grobner bases
ideas to reduction of Feynman integrals was suggested recently in [25,26] where the whole
index space for integrals (16) is partitioned into the so-called secfors in accordance with the
extra boundary conditions. Then in every sector a certain kind of a Grobner-like basis is
constructed. As to an extended discussion of generating difference schemes by means of
Grobner bases we refer to our recent paper [3].
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