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GRéOBNER BASES APPLIED TO SYSTEMS OF LINEAR
DIFFERENCE EQUATIONS

V. P. Gerdt
Joint Institute for Nuclear Research, Dubna

We consider systems of partial (multidimensional) linear difference equations. Speciˇcally, such
systems arise in scientiˇc computing under discretization of linear partial differential equations and in
computational high energy physics as recurrence relations for multiloop Feynman integrals. The most
universal algorithmic tool for investigation of linear difference systems is based on their transformation
into an equivalent Gréobner basis form. We present an algorithm for this transformation implemented
in Maple. The algorithm and its implementation can be applied to automatic generation of difference
schemes for linear partial differential equations and to reduction of Feynman integrals. Some illustrative
examples are given.
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INTRODUCTION

Let N>0 and N�0 be the sets of positive and nonnegative integers, Q be the set of rational
numbers, Y := { yj(x1, . . . , xn) | j = 1, . . . , m m, n ∈ N>0} be the set of functions in
n variables, and θi be the right-shift operator for the ith variable: θi ◦ y(x1, . . . , xn) :=
y(x1, . . . , xi + 1, . . . , xn). For the power products θμ1

1 · · · θμn
n of the shift operators we shall

use the multiindex notation θμ, where μ := {μ1, . . . , μn} (μ ∈ Nn
�0) with μ :=

∑
μi. The

set of all such operator products will be denoted by Θ.
And then the most general form of a system of K ∈ N>0 partial (n > 1) and multivariate

(m > 1) linear difference equations is given by

a0 +
m∑

j=1

∑
ν

akj; νϑν
k ◦ yj = 0, k = 1, . . . , K, ϑν

k ∈ Θ, (1)

where all sums are ˇnite and coefˇcients a0, akj; ν may depend on the variables X :=
{x1, . . . , xn} and on a ˇnite set of parameters C := {c1, . . .}. Hereafter we shall assume
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that all coefˇcients in (1) are rational functions of the variables and parameters with integer
coefˇcients:

a0, akj; ν ∈ Q(X ∪ C). (2)

This restriction on the coefˇcients allows one to apply algorithmic technique of the next
section.

It is well known that, except very simple cases, systems of form (1), (2) do not admit
exact solutions and are rather poorly studied in the literature [1]. However, such systems play
a fundamental role in a number of important applications, for instance in:

Scientiˇc Computing. Numerical solving of linear partial differential systems [2] with
rational function coefˇcients. Recently, it was observed [3] that one can automatically generate
ˇnite-difference schemes for such partial differential equations (PDEs) by eliminating partial
derivatives from certain linear partial and multivariate difference systems. In so doing, for
homogeneous PDEs whose coefˇcients may also be rational functions of parameters one deals
with systems of form (1), (2) with a0 = 0.

Computational High Energy Physics. Reduction of multiloop Feynman integrals [4].
These integrals, after a proper ˇxed right shift of the variables in X , satisfy the univariate
system of partial difference equations (recurrence relations) [5] whose rational function coef-
ˇcients depend on such physical parameters as the space-time dimension, masses and external
momenta. The problem is to reduce the integrals to be evaluated to a minimal set of basic
or master integrals, i.e., those integrals which are independent modulo the difference system,
and then to express other integrals in terms of the basic ones.

Computational Economics. Characterization of economic behavior in macroeconomics [6].
Here for some macroeconomic problems one has to solve the system (1) with constant
parametric coefˇcients.

To investigate or to solve difference systems (1) with rational coefˇcients (2), one can use
the universal algorithmic Gréobner bases method invented about 40 years ago by Buchberger [7]
for systems of multivariate commutative polynomials generating polynomial equations [8].
The main idea of this method is to rewrite the initial system of equations into a certain
equivalent form called a Gréobner basis which makes easier investigation of the system and
its solving. The underlying Buchberger algorithm [8] is built in all modern general-purpose
computer algebra systems such as Maple, Mathematica and others.

On the basis of research made to date, the Gréobner bases theory was extended to some
®weakly¯ noncommutative polynomials as well as to linear differential or difference polynomi-
als and operators [9, 10]. Generally, however, the noncommutative and nonlinear differential
or difference Gréobner bases may not exist (be inˇnite). For difference systems (1), (2) Gréobner
bases are always ˇnite and can be constructed by Buchberger's algorithm straightforwardly
translated to difference algebra [10].

Recently [3,11] we have presented the difference form of our polynomial algorithm devised
in [12], improved in [13] and specialized to the so-called Janet and Janet-like monomial
divisions [14] which go back to the constructive ideas of French mathematician Janet [15].
The algorithm constructs a Janet(-like) basis [14] which is also a Gréobner basis. Though
generally Janet bases [12] and Janet-like bases are redundant as Gréobner ones, the algorithm
in its improved version [3,13] allows one also to output reduced Gréobner bases without any
additional computational costs. The implementation [16] of the algorithm in Maple allows a
user to compute linear difference Janet(-like Gréobner) bases.
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In the present paper we describe brie
y a simple version of the Janet division algorithm
(Sec. 1) and consider its application to the above-listed problems from scientiˇc computing
(Sec. 2) and computational high energy physics (Sec. 3). Both problems are purely algebraic
and can be completely solved with the use of Gréobner bases. We illustrate this fact by simple
examples. Our presentation is addressed to non-algebraists. For this reason we slightly abuse
algebraic terminology and refer to the references in bibliography for more precious deˇnitions
and notions.

1. TRANSFORMATION TO GRéOBNER BASIS

In this section we deˇne the concept of a Gréobner basis form for the difference system (1),
(2) and present an algorithm for its computation. The Gréobner basis form of the system (1)
is deˇned by a ranking � (linear order on) of terms θμ ◦ y j and such that for all i, j, k, μ, ν
the following holds:

θiθ
μ ◦ y j � θμ ◦ y j , θμ ◦ y j � θν ◦ yk ⇐⇒ θiθ

μ ◦ y j � θiθ
ν ◦ yk.

If |μ| � |ν| =⇒ θμ ◦ yj � θν ◦yk, the ranking is called orderly. If j > k =⇒ θμ◦yj � θν◦yk,
the ranking is called elimination.

Denote by fk the left-hand side of the kth equation in (1) and by F := {f1, . . . , fK}
the set of all the left-hand sides in the system. Fixing a ranking � provides every f ∈ F
with the leading term lt(f) := a ϑ ◦ yj (ϑ ∈ Θ, a �= 0) and leading coefˇcient lc(f) := a.
Furthermore, denote by R ⊃ F the set of all right-hand sides f �= 0 for linear difference
equations f = 0 which are consequences of the system (1), (2). F is called generating set
or basis of R (denotation: R = 〈F 〉). In what follows we shall assume that, given a ranking
�, all f ∈ R are normalized, that is, divided by their leading coefˇcients. If F ⊆ R, then
lt(F ) will denote the set of the leading terms and ltj(F ) will denote its subset for function
y j . Therefore,

lt(F ) =
m⋃

j=1

ltj(F ).

Now we are ready to deˇne a Gréobner basis for given F and ranking � as a ˇnite subset
G ⊂ R = 〈F 〉 such that R = 〈G〉 and

∀f ∈ R , ∃ g ∈ G, θ ∈ Θ : lt(f) = θ ◦ lm(g). (3)

It follows that the leading term of every f ∈ R is reducible modulo G and yields the head
reduction:

f −→
g

f ′ := f − θ ◦ g, f ′ ∈ R.

If f ′ �= 0, then its leading term is again reducible modulo G. And then by repeating the
reduction ˇnitely many times [8Ä10] we obtain f −→

G
0. Generally, if a linear difference

expression h (not necessarily from R) contains a term u with coefˇcient c �= 0 such that
u = c ϑ ◦ lt(f) for some ϑ ∈ Θ and f ∈ F ⊂ R, then h can be reduced:

h −→
g

h′ := h − c ϑ ◦ f. (4)
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By applying the reduction ˇnitely many times, one obtains a polynomial h̄ which is either
zero or such that all its (nonzero) terms are irreducible modulo set F . In both cases h̄ is
said to be in the normal form modulo F (denotation: h̄ = NF (h, F )). A Gréobner basis G is
called reduced if g = NF (g, G \ {g}) for every g ∈ G.

In our algorithmic construction of reduced Gréobner bases we shall use a restricted set of
reductions called Janet reductions (cf. [13]) and deˇned as follows.

For a ˇnite set F and a ranking �, we partition every set ltk(F ) into groups labeled by
d0, . . . , di ∈ N�0 (0 � i � n). Here [0]k := ltk(F ) and for i > 0 the group [d0, . . . , di]k is
deˇned as

[d0, . . . , di]k := {u ∈ ltk(F ) | d0 = 0, dj = degj(u), 1 � j � i},

where degi(θμ ◦ yk) := μi. Operator θi is called J(anet)-multiplicative for f ∈ F if lt(f) ∈
[d0, . . . , di−1] and degi(u) = max{degi(v) | v ∈ [d0, . . . , di−1]}. Denote by MJ(f, F ) the
set of J(anet)-multiplicative shift operators for f ∈ F , the complement set {θ1, . . . , θn} \
MJ(f, F ) of J(anet)-nonmultiplicative shift operators by NMJ(f, F ) and the set of all
possible power products of J-multiplicative operators (including identity operator) by J(f, F ).
It is clear that J(f, F ) ⊂ Θ.

A ˇnite set G ∈ R = 〈F 〉 is called a Janet basis (cf. [13]) if

∀f ∈ R , ∃ g ∈ G, θ ∈ J(g, G) : lt(f) = θ ◦ lt(g). (5)

Similarly to (4), a J-reduction is deˇned as

h −→
g

h′ := h − c ϑ ◦ f, ϑ ∈ J(f, F ), (6)

for a polynomial h ∈ R containing a term u with coefˇcient c �= 0 satisfying u = c ϑ ◦ lt(f)
for some f ∈ F and ϑ ∈ J(f, F ).

Since J-reducibility (6) implies the Gréobner reducibility (4), a Janet basis satisfying (5)
is also a Gréobner basis. The converse is generally not true; that is, not every Gréobner
basis is a Janet one. The algorithmic characterization of a Janet basis G is the following
condition (cf. [13]):

∀g ∈ G, θ ∈ NM(g, G) : NFJ (θ ◦ g, G) = 0, (7)

which is a cornerstone of the below algorithm for construction of Janet bases (3).

This algorithm is a translation (with some minor modiˇcations) of the polynomial algo-
rithm in [17] into the difference case. Due to the normalization of h done at Step 15 before
insertion of h into the intermediate basis G, the algorithm outputs the minimal and normalized
Janet basis which is uniquely deˇned by an input difference system F and a ranking [12].
Correctness and termination of the difference algorithm immediately follow from those for its
polynomial counterpart [12,13]. Algorithm JanetBasis implemented in its improved form [3]
as the Maple package LDA (abbreviates Linear Difference Algebra) [16], and in the next two
sections computation with the package is illustrated by examples.



Gréobner Bases Applied to Systems of Linear Difference Equations 429

Algorithm: JanetBasis (F,�)

Input: F , a ˇnite linear difference set; �, a ranking
Output: G, a Janet basis of 〈F 〉

1: choose f ∈ F with the lowest lt(f) w.r.t. �
2: G := {f}
3: Q := F \ G
4: do
5: h := 0
6: while Q �= ∅ and h = 0 do
7: choose p ∈ Q with the lowest lt(p) w.r.t. �
8: Q := Q \ {p}
9: h := NFJ(p, G)

10: od
11: if h �= 0 then
12: for all g ∈ G such that lt(g) = θμ ◦ lt(h), |μ| > 0 do
13: Q := Q ∪ {g}; G := G \ {g}
14: od
15: G := G ∪ {h/ lc(h)}
16: Q := Q ∪ { θβ ◦ g | g ∈ G, θβ ∈ NMJ(g, G) }
17: ˇ
18: od while Q �= ∅
19: return G

2. GENERATION OF DIFFERENCE SCHEMES

In paper [3] an algorithmic approach was developed to construct ˇnite-difference schemes
for linear PDEs in two independent variables and on uniform orthogonal grids with possibly
distinct mesh steps for x and y. We outline here the main idea of the approach and refer
to [3] for more details. In so doing, we restrict our consideration by scalar equations of order
� 2 which admit the conservation law form

∂V

∂x
+

∂W

∂y
= 0, (8)

where V and W are functions of independent variables x, y, dependent variable u(x, y) and
its partial derivatives ux, uy, uxx, . . . The differential equation (8) can be rewritten in the
integral form ∮

Γ

−Wdx + V dy = 0, (9)

which is valid for arbitrary closed contour Γ. Discretization of (9) instead of (8) is natural
for preserving the conservation law at the discrete level (conservative scheme).

Denote the grid values of function u(x, y) and its derivatives by

uj k := u(xj , yk), (ux)j k := ux(xj , yk), (uy)j k := uy(xj , yk),
(uxx)j k := uxx(xj , yk), . . . , (10)
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and ˇx some integration contour Γ in (9) on the grid. To be speciˇc, let us choose a simple
rectangular contour as shown in Fig. 1.

Now we add to the integral equation (9) for the rectangular contour of Fig. 1 all the related
(exact) integral relations between u(x, y) and its partial derivatives:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj+2∫
xj

uxdx = u(xj+2, y) − u(xj , y) ,

yk+2∫
yk

uydy = u(x, yk+2) − u(x, yk) ,

xj+2∫
xj

uxxdx = ux(xj+2, y) − ux(xj , y) ,

yk+2∫
yk

uxydy = ux(x, yk+2) − ux(x, yk) ,

.....................................................................................................................

(11)

Fig. 1. Integration con-
tour on grid

Our purpose is to obtain a difference scheme for uj k from a proper
discretization of integral equations (9) and relations (11). To do
that one should use as many relations in (11) as the number of all
proper derivatives of u up to the maximal orders of their occurrence
in the integrand of (9). Then the difference scheme can be obtained
by an algebraic difference elimination of all discrete proper partial
derivatives in list (10) from the combined system (9), (11). The
algebraic elimination can be achieved by computing a Gréobner or
Janet basis for the last system and a suitable elimination ranking (see
Sec. 2) satisfying uj k ≺ (ux)j k ≺ (uxx)j k ≺ . . .

Therefore, to construct an initial system of discrete equations
for the following difference elimination, it sufˇces to approximate

numerically the contour integral (9) for the chosen contour of Fig. 1 together with the integral
relations (11) in terms of the grid unknowns (10). For this purpose one can choose various
quadrature formulas for these integrals, and the difference scheme obtained may depend on
the choice. For simplicity sake we apply here for all the integrals in (9) and (11) the simplest
rectangle (midpoint) rule:

⎧⎪⎪⎨
⎪⎪⎩

(Wj+1 k+2 − Wj+1 k)h1 + (Vj+2 k+1 − Vj k+1)h2 = 0,
(ux)j+1 k2h1 = uj+2 k − uj k,
(uy)j k+12h2 = uj k+2 − uj k,
.......................................................................................

(12)

where h1 := xj+1−xj and h2 := yk+1−yk are the grid mesh steps for our uniform orthogonal
grid.

For linear difference system (12) Janet (Gréobner) basis exists for any ranking, and, hence,
the elimination can be performed by applying the above algorithm JanetBasis. To illustrate
this algorithmic procedure for the difference schemes generation, consider a simple example
of the Heat equation in its conservation law form [3]:

ut + αuxx = 0 =⇒
∮
Γ

−αuxdt + udx = 0, (13)
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where α is a symbolic parameter. The integrand in (13) contains the only partial derivative
ux. Hence, we need to add the only integral relation

xj+1∫
xj

uxdx = u(xj+1, t) − u(xj , t). (14)

Fig. 2. Integration con-

tour for the heat equation

Now consider u(x, t) and ux(x, t) on the uniform orthogonal
grid with the spatial mesh step h and the temporal mesh step τ , and
choose the simplest contour shown in Fig. 2. As this takes place, we
can approximate the integral of ux(x, t) over x in (13), (14) on the
grid points by the rectangular or trapezoidal rules.

Then, applying the midpoint rule for the contour integral and
the trapezoidal rule for the relation integral, we ˇnd two difference
equations for two dependent variables u, ux:⎧⎪⎨
⎪⎩

α
τ

2
(1 + θt − θ2

x − θtθ
2
x) ◦ ux − 2 h (θxθt − θx) ◦ u = 0,

h

2
(θx + 1) ◦ ux − (θx − 1) ◦ u = 0.

(15)

Furthermore, we show how to generate a ˇnite-difference scheme for the Heat equa-
tion (13) by using the Maple package LDA [16]:

> with(LDA):

First, we enter the independent and dependent variables for the problem.

> ivar := [j,k]; dvar := [ux,u]:

Second, we translate (15) into the input format of the main command JanetBasis in the
package.

> L:=[a*t/2*(ux(j,k)+ux(j+1,k)-ux(j,k+2)-ux(j+1,k+2))-
> 2*h*(u(j+1,k+1)-u(j,k+1)),
> h/2*(ux(j,k+1)+u(j,k)-u(j,k+1)+u(j,k))]:

Third, we compute the (minimal) Janet basis for L w.r.t. an elimination ranking with ux � u
to eliminate the partial derivative ux from the system (15). This ranking is chosen by using
option 2 as below; in so doing we output only the element in Janet basis which does not
contain ux.

> JanetBasis(L,ivar,dvar,2)[1][1];

− 2 a t u(j , k + 1) + h a t u(j , k) + 2 a t u(j , k) + 2 a t u(j , k + 3) − h a t u(j , k + 2)
−2 a t u(j , k + 2) + 2 a t u(j + 1, k + 3) − h a t u(j + 1, k + 2) − 2 a t u(j + 1, k + 2)
+4 h2 u(j + 1, k + 2) − 4 h2 u(j , k + 2) − 2 a t u(j + 1, k + 1) + h a t u(j + 1, k)
+2 a t u(j + 1, k)
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Thereby, we obtain the classical CrankÄNicolson scheme

uj+1
k − uj

k

τ
+ α

(uj+1
k+1 − 2 uj+1

k + uj+1
k−1) + (uj

k+1 − 2 uj
k + uj

k−1)
2 h 2

= 0,

if in the above Maple output one shifts the second index by −1 and uses the ˇrst index as a
superscript. The same scheme is also obtained for the midpoint integration method applied
to (14).

3. REDUCTION OF FEYNMAN INTEGRALS

Evaluation of Feynman integrals is the cornerstone step of perturbative computations in
elementary particle physics [4]. Consider, for example, a typical scalar L-loop integral with
E external legs:

I(ν1, . . . , νn) =
∫

ddk1 · · · ddkL
1

n∏
j=1

D
νj

j

, (16)

which corresponds to n internal lines in the related Feynman diagram. Integration for every
loop momentum ki is done over the space-time of dimension d = 4 − ε, where ε is the
parameter of dimensional regularization [18]. The denominator Dj for the jth internal line
with mass mj is given by Dj := p2

j − m2
j . Here the line momenta pj are linearly expressed

in terms of the loop momenta ki (i = 1, . . . , L) and external momenta qs (s = 1, . . . , E) as

pj =
L∑

s=1

αjsks +
E∑

t=1

βjtqt, αjs, βjt ∈ Q.

Consider the combined set of L + E vectors

ra :=
{

ka, a = 1, . . . , L,
qa−L, a = L + 1, . . . , L + E.

Fig. 3. One-loop propagator diagram

Recurrence relations for integral (16) are derived by the
integration-by-parts method [5], whose main idea is to use
the integral identities (cf. [4, 19])∫

ddk1 · · · ddkL
∂

∂ki

rj
n∏

k=1

Dνk

k

= 0 (17)

together with the d-vector identities

2piqj = (pi + qj)2 − (p2
i − m2

i ) − (q2
j + m2

i ). (18)

Integral identities (17) follow from an observation that any integral of ∂/∂ki(. . .) vanishes
since there are no surface terms in dimensional regularization (cf. [20]).
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As a simple example consider one-loop propagator diagram of Fig. 3 with external momentum
q and with one massive and another massless internal lines. This example was studied, for
example, in [4, 21] and used already in [16]. The corresponding Feynman integral (16) is
given by

I(ν1, ν2) =
∫

ddk

Dν1
1 Dν2

2

, D1 := (k + q)2, D2 := k2. (19)

In accordance with (17), there are two independent integral identities. Their integrands are

∂

∂k

k

Dν1
1 Dν2

2

=
1

Dν1
1 Dν2

2

[
1
∂k

k − 2ν1(k2 + q · k)
D1

− 2ν2k
2

D2

]
,

∂

∂k

q

Dν1
1 Dν2

2

=
1

Dν1
1 Dν2

2

q

[
− 2ν1(k + q)

D1
− 2ν2k

D2

]
.

Taking into account the identity 2k · q = (k + q)2 − (k2 − m2) − (q2 + m2) of the type (18)
and equality ∂/∂k · k = d we obtain the difference system

{ [
d − ν1 − 2ν2 − ν1θ1θ

(−1)
2 + ν1(q2 − m2)θ1 − 2m2ν2θ2

]
◦ I(ν1, ν2) = 0,[

ν1 − ν2 + ν1(q2 − m2)θ1 − ν1θ1θ
(−1)
2 + ν2θ

(−1)
1 θ2 − ν2(q2 + m2)θ2

]
◦ I(ν1, ν2) = 0,

(20)
where θ

(−1)
i and θ

(−1)
2 denote the left-shift operators for indices ν1 and ν2, respectively.

Now we construct the minimal set of master or basic integrals for the two-indexed fam-
ily (19) of Feynman integrals by applying the Maple package LDA [16] with the input
denotations k := ν1, n := ν2 and f(k + 1, n + 1) := I(ν1, ν2):

> ivar:=[k,n]: dvar:=[f]:

Then, we enter the recurrence relations (20).

> L:=[(d-k-2*n)*f(k+1,n+1)-k*f(k+2,n)+k*(q^2-m^2)*f(k+2,n+1)-
> 2*m^2*n*f(k+1,n+2),
> (k-n)*f(k+1,n+1)+k*(q^2-m^2)*f(k+2,n+1)-k*f(k+2,n)+n*f(k,n+2)-
> n*(q^2+m^2)*f(k+1,n+2)]:

As the next step we compute a Janet basis for an orderly ranking (Sec. 1) induced by
θ1 � θ2.

> JB:=JanetBasis(L,ivar,dvar):

In order to compute the set of master integrals we have to take into account that I(ν1, ν2) =
0 for ν2 � 0 [4, 20]. This extra boundary information is input as

> AddRelation(f(k+j,n)=0,ivar,dvar):

Master integrals are those f(k, n) which are independent modulo all the consequences R
(see Sec. 1) of (20). Thereby, the master integrals are easily determined via the leading terms
of the Janet basis. Namely, one has to determine those f(k, n) that are not expressible as the
action of a power product θμ1

1 θμ2
2 (μ1, μ2 ∈ N�0) on a leading term in the Janet basis (cf.

deˇnition (3)).



434 Gerdt V. P.

The set of master integrals is computed by invoking the command:

> ResidueClassBasis(ivar,dvar);

[f(k, n + 1), f(k, n + 2), f(k + 1, n + 1)].

Now any integral f(k + i, n + j) can be explicitly expressed as a linear combination of
the master integrals whose coefˇcients are rational functions in parameters d, q2 and m2. The
explicit expression is obtained algorithmically by applying the Gréobner or Janet reductions
described in Sec. 1. In LDA the Janet reductions are performed. To show the output of such
an expression for f(k+3, n+2) and make the output more compact, we let m = 0 and show
the underlying piece of the Maple code:

> m:=0: J:=JanetBasis(L,ivar,dvar):

> AddRelation(f(k,n+j)=0,ivar,dvar):

> ResidueClassBasis(ivar,dvar);

[f(k + 1, n + 1)]
> InvReduce(f(k+3,n+2),J,"F");

−((d − 2 − 2 k − 2 n) (d − 4 − 2 k − 2 n)(d − 2 − k − n) (d − 3 − k − n) (−n − 2 k + d)×
×f(k + 1, n + 1))/(q6 (k + 1) (−2 k + d − 4) k (−2 k − 2 + d)n)−1.

In the massless case (m = 0) a new extra relation f(k, n + j) equivalent to the boundary
condition I(ν1, ν2) = 0 for ν1 � 0 is added that yields the only master integral f(k+1, n+1).
The last command invokes the LDA procedure that computes the J-normal form of f(k +
3, n + 2) modulo the Janet basis. This normal form just represents f(k + 3, n + 2) in terms
of the master integral. Option ®F¯ provides factorization of the numerator and denominator
in the output rational function coefˇcient. It should be noted that, since integral I(ν1, ν2) is
non-vanishing only when both its indices are positive, the master integral can be identiˇed
with I(1, 1).

CONCLUSION

We have shown above that the Gréobner bases technique can be applied to generate
difference schemes for linear PDEs and to reduce multiloop Feynman integrals. Each of
our simple illustrative examples of Secs. 2 and 3 needs less than 1 s of computing time on
a 1.7 MHz personal computer with 512 Mb RAM. Larger examples, however, can require
much more computer resources since complexity of a Gréobner basis computation is at least
singly exponential, and may be even doubly exponential, in a number of variables [9, 22].
Besides, blowing-up of intermediate coefˇcients, especially in the presence of parameters, as
in the case of recurrence relations for Feynman integrals, is a serious obstacle in the practice.
That is why to apply Gréobner bases to multivariate and multiparametric problems, one has
not only to optimize and improve the underlying algorithms and data structures, but also to
implement them in lower level languages than Maple or Mathematica. Our Janet division
algorithms [13] have already been implemented in C and C++ (see the Web page [23]) for
commutative polynomials, and extension of these codes to differential and difference equations
is planned for the coming years. As argued in [21, 24], differential Gréobner bases can also
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be applied to reduction of Feynman integrals. A practical specialization of the Gréobner bases
ideas to reduction of Feynman integrals was suggested recently in [25, 26] where the whole
index space for integrals (16) is partitioned into the so-called sectors in accordance with the
extra boundary conditions. Then in every sector a certain kind of a Gréobner-like basis is
constructed. As to an extended discussion of generating difference schemes by means of
Gréobner bases we refer to our recent paper [3].
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