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The case of small intercentre distances in the D-dimensional two Coulomb centres problem
(Z1eZ2)D (D � 2) is studied by solving separated wave equations. The usage of Maple symbolic
computation system (Maple Waterloo Software, Inc., see http://www.maplesoft.com) for solving the
problem is under discussion. The obtained results are compared with the previous asymptotic and nu-
merical treatments. The correspondence between energy terms of the systems (Z1eZ2)3 and (Z1eZ2)D

is found.

‘²ÊÎ ° ³ ²ÒÌ · ¸¸ÉμÖ´¨° ³¥¦¤Ê Í¥´É· ³¨ ¢ D-³¥·´μ° § ¤ Î¥ ¤¢ÊÌ ±Ê²μ´μ¢¸±¨Ì Í¥´É·μ¢
(Z1eZ2)D (D � 2) ¨¸¸²¥¤Ê¥É¸Ö ¶ÊÉ¥³ ·¥Ï¥´¨Ö · §¤¥²¥´´ÒÌ ¢μ²´μ¢ÒÌ Ê· ¢´¥´¨°. �¡¸Ê¦¤ ¥É¸Ö
¨¸¶μ²Ó§μ¢ ´¨¥ ¶·μ£· ³³Ò ¸¨³¢μ²Ó´ÒÌ ¢ÒÎ¨¸²¥´¨° Maple. �μ²ÊÎ¥´´Ò¥ ·¥§Ê²ÓÉ ÉÒ ¸· ¢´¨¢ ÕÉ¸Ö
¸ ¶·¥¤Ò¤ÊÐ¨³¨  ¸¨³¶ÉμÉ¨Î¥¸±¨³¨ ¨ Î¨¸²¥´´Ò³¨ · ¸Î¥É ³¨. �¡´ ·Ê¦¥´μ ¸μμÉ¢¥É¸É¢¨¥ Ô´¥·£¥É¨-
Î¥¸±¨Ì Î²¥´μ¢ ¸¨¸É¥³ (Z1eZ2)3 ¨ (Z1eZ2)D .
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INTRODUCTION

This work is devoted to the generalization of results of the asymptotic theory for the
quantum mechanics two Coulomb centres problem Z1eZ2 [1] by in�ating the number of
spacial dimension (brie�y (Z1eZ2)D problem). Separating the problem in hyperspheroidal
coordinates [2] leads to two coupled con�uent Heun equations [3], the singularities of which
are located at ±1 and at inˇnity. To calculate the energy levels of the two Coulomb centres
system is a two-parameter boundary-eigenvalue problem. We solve this problem in the case
of small intercentre separations by means of asymptotic methods that have been proposed
in [1] and developed in [3]. The two-dimensional two centres problem (Z1eZ2)2 at small
intercentre separations was studied in work [4].

The solution of the Schréodinger equation with two-centre potential is of considerable
interest in various problems of few-body systems. They describe the bound states of light
particles in the ˇeld of two heavy particles. Usually such a type of systems arises in
molecular physics. However, during the last years interest has been shown in other systems
modelled by the two-centre Schréodinger equation; namely, baryons containing heavy quarks
(QQq baryons) [5] and heavy �avoured hybrid mesons (QQg mesons) are now becoming the



438 Bondar D. I., Hnati�c M., Lazur V. Yu.

subject of extensive investigation. There is a close connection between the (Z1eZ2)D problem
and SU(2) monopole [6]. The ˇve-dimensional bound system of ®charge-dion¯ with SU(2)
Yang monopole is described by equations which we obtain at the separation of variables
of (1) (see below) in hyperspheroidal coordinates. Besides, equation (1) is connected with
the well-known Teukolsky equation [7].

1. FORMULATION OF THE PROBLEM

The Schréodinger equation for the (Z1eZ2)D problem in atomic units (m = e = � = 1)
reads (

−1
2
Δ − Z1

r1
− Z2

r2

)
Ψ(r; R) = EΨ(r; R), (1)

where r1 and r2 are distances from the electron to charges Z1 and Z2; R is the intercentre
distance. Here the vectors r, r1, r2 belong to the D-dimensional vector space R

D and

Δ =
D∑

i=1

∂2

∂x2
i

. We only consider bound states with E < 0.

In the case of D � 3 the variables in equation (1) are separated in a hyperspheroidal
coordinate system [2]. And we come to necessity of solving the following boundary problems:

[
1

(ξ2 − 1)
D−3

2

d

dξ
(ξ2 − 1)

D−1
2

d

dξ
− λ(ξ) − p2(ξ2 − 1)+

+ 2pαξ − m(m + D − 3)
ξ2 − 1

]
Π(D)(ξ) = 0, (2)

|Π(D)(1)| < ∞, |Π(D)(ξ)| ξ→∞−→ 0, (3)

[
1

(1 − η2)
D−3

2

d

dη
(1 − η2)

D−1
2

d

dη
+ λ(η) − p2(1 − η2)+

+ 2pβη − m(m + D − 3)
1 − η2

]
Ξ(D)(η) = 0, (4)

|Ξ(D)(±1)| < ∞, (5)

where

p = (R/2)(−2E)1/2, α = (Z2 + Z1)(−2E)−1/2, β = (Z2 − Z1)(−2E)−1/2,

λ(ξ) and λ(η) are eigenvalues and m is an azimuthal quantum number (m = 0, 1, 2, . . .).
Both equations (2) and (4) are singly con�uent Heun equations [3]. It is convenient to

consider boundary problems with functions Π(D)(ξ) and Ξ(D)(η) that satisfy boundedness
conditions at the ends of the corresponding intervals. The eigenfunctions of the problems
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(2), (3) and (4), (5) are respectively called the radial and angular Coulomb hyperspheroidal
functions (RCHFs and ACHFs).

In the case of D = 2 the variables are separated in an elliptic coordinate system [4] and
we obtain the two following boundary-eigenvalue problems:

[
d2

du2
+ 2pα coshu − p2

(
cosh2 u − 1

)
− λ(u)

]
Π(2)(u) = 0, (6)

Π(2)(u + 2πi) = Π(2)(u), |Π(2)(0)| < ∞, |Π(2)(u)| u→∞−→ 0, (7)[
d2

dv2
+ 2pβ cos v − p2

(
1 − cos2 v

)
+ λ(v)

]
Ξ(2)(v) = 0, (8)

Ξ(2)(v + 2π) = Ξ(2)(v). (9)

Here λ(u) and λ(v) are eigenvalues. Equations (6) and (8) belong to the class of ODEs with
periodic coefˇcients. The equations can be transformed to the Ince equation [8] by means
of changing the dependent and independent variables. The eigenfunctions of the problems
(6), (7) and (8), (9) are respectively called the radial and angular Coulomb elliptic functions
(RCEFs and ACEFs).

In spite of the fact that equations (6) and (8) have forms that are radically different from
the forms of equations (2) and (4), the former ones can be solved by methods slightly different
from the methods which are used in this paper for solving equations (2) and (4). As far as
equations (6) and (8) are concerned, they are investigated in papers [4] in detail and we do
not include this matter in the current letter.

2. CONSTRUCTING ACHFs

It is useful for further deductions to introduce the B-function by the following formula:

B(D), m
n (z) =

Γ(n + m + D − 2)
Γ(n − m + 1)

(z2 − 1)
3−D

4 P
−m−D−3

2

n+ D−3
2

(z), (10)

where n and z are unrestricted, Pm
n (z) are Legendre functions [9]. We will restrict ourselves

to D = 3, 4, 5, . . . and m = 0, 1, 2, . . . in further deductions. In addition, we also introduce
the modiˇed B-function

B
(D), m
n (x) =

Γ(n + m + D − 2)
Γ(n − m + 1)

(1 − x2)
3−D

4 P
−m−D−3

2

n+D−3
2

(x), (11)

where −1 � x � 1, P
m
n (x) are Legendre functions on the cut [9].

An expansion for the eigenfunction Ξ(D)(η) of the boundary problem (8), (9) can be
presented in the form

Ξ(D)(η) =
∞∑

n=m−l

gnB
(D), m
l+n (η). (12)
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The coefˇcients gn satisfy the system of recurrent equations

p2ΩnΩn+1gn+2 + 2pβΩngn+1+

+
[
λ(η) − (l + n)(l + n + D − 2) − p2 + p2 (Ωn−1Γn + ΩnΓn+1)

]
gn+

+ 2pβΓngn−1 + p2ΓnΓn−1gn−2 = 0, gm−l−1 = 0, gm−l−2 = 0, (13)

Ωn =
l + n + m + D − 2

2l + 2n + D
, Γn =

l + n − m

2n + 2l + D − 4
.

The asymptotic procedure of getting the succeeding coefˇcients gn in expansion (12) and
separation constant λ(η) is based on the formal series

gn = p|n|
∞∑

j=0

[gn]2jp
2j , g0 ≡ 1, λ(η) =

∞∑
j=0

[λ]2jp
2j . (14)

Expansions (14) are inserted into the recurrent equations (13). Then we equate coefˇcients
of alike powers of p. On the ˇrst step of the recursive procedure, [λ]0 is obtained. On the
next step the coefˇcients [g±1]0 are obtained, then [λ]2 and so on.

Now we will consider the realization of the recurrent procedure in Maple. Firstly, we
have to enter formal series (14) for the coefˇcient gn:

> g:=proc (n) local Res; if n=0 then Res:=1 else
Res:=p^abs(n)*sum(G(n,2*j)*p^(2*j), j=0..2); fi; Res; end proc;

Secondly, we enter the recurrent equation (13):

> Eq:=(n)-> p^2*Omega(n)*Omega(n+1)*g(n+2) + 2*p*beta*Omega(n)*g(n+1) +
(L-(n+l)*(n+l+D-2)-p^2+p^2*(Omega(n-1)*Gamma(n)+Omega(n)*Gamma(n+1)))
*g(n) + 2*p*beta*Gamma(n)*g(n-1) + p^2*Gamma(n)*Gamma(n-1)*g(n-2);

Thirdly, formal series (14) for λ(η) is entered:

> L:= L0 + L2*p^2 + L4*p^4;

It is useful to introduce an additional procedure which collects the terms of alike powers of p:

> COEF:=(N,M)->coeff( expand(Eq(N)), p, M);

Finally, we have all necessary procedures to realize the recurrent scheme

> L0:=solve(COEF(0,0)=0, L0);
> G(1,0):=solve(COEF(1,1)=0, G(1,0));
> G(-1,0):=solve(COEF(-1,1)=0, G(-1,0));
> L2:=combine(solve(COEF(0,2)=0, L2));
> G(2,0):=solve(COEF(2,2)=0,G(2,0));
> G(1,2):=solve(COEF(1,3)=0,G(1,2));
> G(-2,0):=solve(COEF(-2,2)=0, G(-2,0));
> G(-1,2):=solve(COEF(-1,3)=0, G(-1,2));
> L4 := solve(COEF(0,4)=0, L4);
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3. CONSTRUCTING RCHFs

The expansion of the solution Π(D)
< (ξ) of equation (2), which is ˇnite at ξ = 1, has the

following form:

Π(D)
< (ξ) = e−pξ

∞∑
n=−∞

dn(ν)B(D), m
ν+n (ξ), d0(ν) ≡ 1, dn(ν) = p|n|

∞∑
j=0

[dn(ν)]2jp
2j . (15)

The coefˇcients dn(ν) satisfy three-term recurrent equations which can be easily obtained by
substituting series (15) into equation (2). The coefˇcients dn(ν) can be calculated by means
of the recurrent procedure which was described in Sec. 2.

According to a symmetry property we have to construct the function Π(D)
> (ξ) that is the

continuation of the function Π(D)
< (ξ) to large ξ in the form

Π(D)
> (ξ) = g(ν)y(1)

ν (ξ) + (−1)D−3g(−ν − D + 2)y(1)
−ν−D+2(ξ),

y(1)
ν (ξ) =

(ξ − 1)
m
2

(ξ + 1)
m+D−3

2

∞∑
n=−∞

hn(ν)Rν+ D−3
2 +n

(
p(ξ + 1)

)
,

(16)

hn(ν) = p|n|
∞∑

j=0

[hn(ν)]2jp
2j,

h0(ν) ≡ 1, Rτ (x) = xτ e−x
1F1

(
− α + τ + 1; 2τ + 2; 2x

)
.

Here g(ν) and g(−ν −D + 2) are matching constants, 1F1(a; c; x) is the regular in the origin
solution of con�uent hypergeometric equation [9].

In order to match solutions (15) and (16) we have to present function (15) as a linear
combination of further solutions of equation (2)

Π(D)
< (ξ) = y(2)

ν (ξ) + (−1)D−3y
(2)
−ν−D+2(ξ). (17)

The form of y
(2)
ν (ξ) is rather cumbersome and we do not present it here. It is important that

the function y
(2)
ν (ξ) is a series of the hypergeometric function 2F1(a, b; c; x) [9].

According to some transformation property of the functions y
(1)
ν (ξ) and y

(2)
ν (ξ), the

condition of matching solutions (15) and (16) has the following form:

y(2)
ν (ξ) = g(ν)y(1)

ν (ξ).

The matching constant g(ν) can be obtained by expanding a hypergeometric series repre-

sentation y
(2)
ν (ξ) and the con�uent hypergeometric representation for y

(1)
ν (ξ) and comparing

alike terms.
When α and ν have arbitrary values, the solution Π(D)

> (ξ) in the limit ξ → ∞ has the
form of a linear combination of the two exponents, one decreasing and the other increasing.
Declaring the coefˇcient in front of the increasing exponent to be zero, we get the dispersive
equation that connects the values of the parameters α, ν and p

tan(πα) = tanπ

(
ν +

D − 3
2

)
1 − ε

1 + ε
, ε = O

(
p2ν+D−2

)
. (18)
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CONCLUSIONS

We can calculate the energy of the system (Z1eZ2)D from the dispersive equation (18).
The ˇrst step in deriving asymptotic expansions for the energy is to obtain the expansion of
the parameter ν in powers of p. The asymptotic expansion for ν can be derived by equating
λ(η) and λ(ξ). Inserting the expression for ν into the dispersion equation (18) and solving this
equation by successive approximations, we obtain the asymptotic expressions for the energy
terms of the system (Z1eZ2)D.

We have checked our approximate results with numerical solutions. The comparison of
our results for the values ν (in the case of D = 3) with those of the previous asymptotic and
numerical treatments [10] shows that, as should be expected, evaluation of additional terms
in the asymptotic expansions for ν improves agreement between asymptotic and numerical
results. We have compared high energy levels of the two-dimensional (2D) H+

2 with high
energy levels of the three-dimensional (3D) H+

2 . We have seen that high energy levels of the
2D H+

2 approximate to the corresponding energy levels of the 3D H+
2 . This result conˇrms

a well-known fact: the motion of an electron in the Rydberg state becomes approximately

planar. The energy terms E
(D)
nlm of the system (Z1eZ2)D are connected with the energy terms

E
(3)
nlm of Z1eZ2 by the following relation:

E
(D)
nlm = E

(3)
nlm

∣∣∣∣∣∣∣∣∣∣∣

n → n +
D − 3

2

l → l +
D − 3

2
,

m → m +
D − 3

2

(19)

where n, l, m are spherical quantum numbers. The 1/D-expansion of energy for the
(Z1eZ2)D problem was calculated in work [11] for the ˇrst time. But this expansion gives
poor results in the case of small separations. We have obtained expansion for the energy
which is convergent not only for the small intercentre separations but also for a large number
of spatial dimension.
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