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The mean-ˇeld Green function solution of the two-band singlet-hole Hubbard model for high-Tc

superconductivity in cuprates [1,4] involves expressions of higher order correlation functions describing
respectively the singlet hopping and the superconducting pairing. In the paper we describe a uniˇed
approach to their reduction to expressions involving fermion-fermion mean-ˇeld correlation functions.
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INTRODUCTION

The two-band singlet-hole Hubbard model considered by Plakida et al. [1] for the de-
scription of the high-Tc superconductivity in cuprates in terms of Hubbard operators (HOs)
provides the simplest consistent approach to the incorporation of the essential features of
these systems (strong antiferromagnetic superexchange interaction inside the CuO2 planes,
occurrence of two relatively isolated energy bands around the Fermi level, able to develop
dx2−y2 pairing) such as to describe simultaneously both the normal and the superconducting
states within a frame which secures rigorous fulˇlment of the basic principles of the quantum
mechanics. The equation of motion method for two-time Green functions [2] was successfully
used to derive electron spectra of the model [1] and to incorporate the superconducting state
as well [3, 4].

The present paper reports rigorous results for the expressions of two higher order corre-
lation functions which arise in the generalized mean-ˇeld approximation (GMFA) solution of
the Green function (GF) [4]: 〈X02

i X20
j 〉, which describes the singlet hopping, and 〈X02

i Nj〉,
which describes the exchange superconducting pairing interaction.

The idea proposed in [4] for the evaluation of the average 〈X02
i Nj〉 can be consistently

generalized to yield power series expansions of both statistical averages. We ˇnd that the
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lowest order expressions of the two correlation functions, generically denoted henceforth
〈X02

i Qj〉, where Qj is either X20
j or Nj , are obtained in terms of GMFA Green functions.

This remarkable result follows from the mathematical properties of the Hubbard operators.
These allow the deˇnition of characteristic invariant classes of polynomial Green functions in
terms of the Wannier overlap coefˇcients νij , which are characterized by the property that,
under the iteration of the equation of motion, the operator part remains invariant, while the
polynomial degree in νij is increased making thus possible consistent power series expansions
in the small parameters νij .

1. STATEMENT OF THE PROBLEM

1.1. Hubbard Operators. The Hubbard operators (HOs) Xαβ
i = |iα〉〈iβ| are deˇned for

the four states of the model: |0〉 (vacuum), |σ〉 = |↑〉 and |σ̄〉 = |↓〉 (spin states inside the
hole subband; in numerical calculations, σ = ±1/2, σ̄ = −σ), and |2〉 = |↑↓〉 (singlet state in
the singlet subband).

The multiplication rule holds Xαβ
i Xγη

i = δβγXαη
i . The HOs describing the creation/de-

struction of single states in a subband are Fermi-like ones and obey the anticommuta-
tion relations {Xαβ

i , Xγη
j } = δij(δβγXαη

i + δηαXγβ
i ), while the HOs describing the cre-

ation/destruction of singlets, spin and charge densities, particle numbers, are Bose-like ones
and obey the commutation relations [Xαβ

i , Xγη
j ] = δij(δβγXαη

i − δηαXγβ
i ). At each lattice

site i, the constraint of no double occupancy of any quantum state |iα〉 is rigorously preserved
due to the completeness relation X00

i + Xσσ
i + X σ̄σ̄

i + X22
i = 1.

The particle number operator at site i is given by

Ni = Xσσ
i + X σ̄σ̄

i + 2X22
i . (1)

We deˇne the Hubbard p-form of labels (αβ, γη),

ταβ,γη
p,i =

∑
j �=i

νp
ijX

αβ
i Xγη

j , p = 1, 2, . . . , (2)

where the meanings of HOs Xαβ
i and Xγη

j depend on the context. The Wannier overlap
coefˇcients νij are small quantities rapidly decreasing with the intersite distance rij = |rj−ri|
(see, e.g., [5, 6] and references quoted therein). The nearest neighbour values νi,i±ax/y

=
ν1 � −0.14 and next nearest ones νi,i±ax±ay = ν2 � −0.02 considered in [1] are typical.

1.2. Model Hamiltonian. The Hamiltonian of the model [1] can be rewritten in terms of
linear Hubbard forms describing hopping processes as follows:

H = E1

∑
i,σ

Xσσ
i + E2

∑
i

X22
i +

+ K11

∑
i,σ

τσ0,0σ
1,i + K22

∑
i,σ

τ2σ,σ2
1,i + K12

∑
i,σ

2σ(τ2σ̄,0σ
1,i + τσ0,σ̄2

1,i ), (3)

where the summation label i runs over the sites of an inˇnite two-dimensional square array
the lattice constants of which, ax = ay, are deˇned by the underlying single-crystal structure.
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In Eq. (3), E1 = ε̃d − μ and E2 = 2E1 + Ueff , where ε̃d is the renormalized energy of a
d-hole, μ is the chemical potential, while Ueff ≡ Δ ≈ Δpd = εp − εd is an effective Coulomb
energy corresponding to the difference between the hole energy levels for oxygen and copper.

Keeping in mind that the lower label 1 refers to one-hole states, while the lower label 2
to singlet states, the quantities Kab = 2tpdKab are characteristic hopping energies for either
inband (a = b) or interband (a 	= b;K12 = K21) transitions between the two bands of the
model. Here tpd denotes the hopping p-d integral and Kab are numerical coefˇcients coming
from hybridization effects between the holes and the singlets [1].

The translational invariance of the system gives

(ταβ,γη
i )† = −τβα,ηγ

i = τηγ,βα
i , (4)

which secures the hermiticity of the model Hamiltonian H .
1.3. Mean-Field Approximation. The quasi-particle spectrum and superconducting pair-

ing within the model Hamiltonian (3) are obtained [3,4] from the two-time 4×4 matrix Green
function (GF) in the Zubarev notation [2]

G̃ijσ(t − t′) = 〈〈X̂iσ(t) |X̂†
jσ(t′)〉〉 = −iθ(t − t′)〈{X̂iσ(t), X̂†

jσ}〉, (5)

where 〈· · · 〉 denotes the statistical average over the Gibbs grand canonical ensemble.
The GF (5) is deˇned for the four-component Nambu column operator

X̂iσ = (Xσ2
i X0σ̄

i X2σ̄
i Xσ0

i )(T ), (6)

where superscript (T ) denotes the transposition. The operator X̂†
jσ = (X2σ

j X σ̄0
j X σ̄2

j X0σ
j )

is the adjoint of X̂jσ . Here and in what follows, due to translational invariance, the notation
Gij points to the dependence of the quantity G of interest on the distance rij = |rj − ri|
between the position vectors of the lattice sites j and i, respectively.

The derivation of the GF within GMFA needs the knowledge of the frequency matrix,

Ãijσ = 〈{[X̂iσ, H ], X̂†
jσ}〉. (7)

Direct calculations [4] show that the normal matrix elements of Ãijσ contain one-site
(i = j) GMFA hopping correlation functions which result in O(Kabνij) renormalizations
of the energy parameters E1 and E2, as well as two-site (i 	= j) hopping generated higher
order correlation functions bringing two distinct kinds of contributions to Ãijσ : charge-
spin correlations (which can be conveniently subdivided into chargeÄcharge, 〈NiNj〉, and
spinÄspin, 〈SiSj〉 = 〈Xσσ̄

i X σ̄σ
j 〉, correlations) and the singlet hopping correlation function

〈X02
i X20

j 〉 (singlet destruction at site i followed by singlet creation at site j).

There are three distinct matrix elements out of the eight normal matrix elements of Ãijσ

containing 〈X02
i X20

j 〉: %begineqnarray

(σ2, 2σ) −K11νij〈X02
i X20

j 〉, (8)

(0σ̄, σ̄0) −K22νij〈X02
i X20

j 〉, (9)

(σ2, σ̄0) − 2σK21νij〈X02
i X20

j 〉. (10)
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The only non-vanishing anomalous matrix elements of Ãijσ [4] are the hopping generated
two-site contributions involving the higher order correlation function 〈X02

i Nj〉. This provides
the exchange superconducting pairing mechanism originating in the interaction of an anom-
alous pair of particles at the same site i but in different subbands (X02

i = X0σ
i Xσ2

i ), with the
surrounding particle distribution at the neighbouring site j described by the particle number
operator Nj , Eq. (1). The structure of the anomalous part of Ãijσ is very special:

(σ2, σ̄2) 2σ̄K21νij〈X02
i Nj〉, (11)

(0σ̄, σ0) 2σK21νij〈X02
i Nj〉, (12)

(σ2, 0σ)
1
2
(K11 + K22)νij〈X02

i Nj〉, (13)

(0σ̄, σ̄2) − 1
2
(K11 + K22)νij〈X02

i Nj〉. (14)

The other anomalous matrix elements are obtained by complex conjugation.

2. FUNDAMENTAL RELATIONSHIPS

From the spectral theorem [2],

〈X02
i Qj〉 =

i

2π

+∞∫
−∞

dω

1 − e−βω

[
〈〈X02

i |Qj〉〉ω+iε − 〈〈X02
i |Qj〉〉ω−iε

]
, (15)

where the labels ±iε, ε = 0+, refer to the retarded/advanced Green functions, respectively.
Since both X02

i and Qj are bosonic Hubbard operators, the thermodynamic factor in the
denominator is 1−e−βω and the two Green functions are deˇned in terms of the commutators
of the two operators, i.e.,

〈〈X02
i (t)|Qj(t′)〉〉 = −iθ(t − t′)〈[X02

i (t), Qj(t′)]〉 (16)

for the retarded Green function and a similar deˇnition for the advanced one.
By differentiation with respect to t and use of Fourier transform, we get the following

basic result for the two Green functions in the (r, ω)-representation required by Eq. (15) (for
the sake of simplicity, ±iε terms are omitted):

(ω − E2)〈〈X02
i |Qj〉〉ω = −K11

∑
σ

〈〈τσ2,0σ
1,i |Qj〉〉ω + K22

∑
σ

〈〈τ0σ,σ2
1,i |Qj〉〉ω+

+ K21

∑
σ

2σ
(
〈〈τ0σ̄,0σ

1,i |Qj〉〉ω − 〈〈τσ2,σ̄2
1,i |Qj〉〉ω

)
. (17)

Theorem 1. Let gαβ,γη
2p−1 ≡ 〈〈ταβ,γη

2p−1,i|Qj〉〉ω be a generic notation of the extensions to
Hubbard (2p − 1)-forms (2) of the four Green functions which enter the r. h. s. of Eq. (17).
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Then the recurrence relations hold,

gσ2,0σ
2p−1 =

ν2p−1
ij M I

ijσ

ω − E2
−
K22ν

2p
ij P II

ijσ

(ω − E2)2
+
K2

11 + K2
22

(ω − E2)2
gσ2,0σ
2p+1 − 2K11K22

(ω − E2)2
g0σ,σ2
2p+1 , (18)

g0σ,σ2
2p−1 =

ν2p−1
ij M II

ijσ

ω − E2
+
K11ν

2p
ij P II

ijσ

(ω − E2)2
− 2K11K22

(ω − E2)2
gσ2,0σ
2p+1 +

K2
11 + K2

22

(ω − E2)2
g0σ,σ2
2p+1 , (19)

g0σ̄,0σ
2p−1 =

ν2p−1
ij M III

ijσ

ω − 2E1
+

2σK21ν
2p
ij (P III

ijσ +P IV
ijσ)

(ω − 2E1)(ω − E2)
+

(2K212σ)2

(ω − 2E1)(ω − E2)
g0σ̄,0σ
2p+1 , (20)

gσ2,σ̄2
2p−1 =

ν2p−1
ij M IV

ijσ

ω−(E2+Δ)
+

2σ̄K21ν
2p
ij (PV

ijσ+PVI
ijσ)

[ω−(E2+Δ)](ω−E2)
+

(2K212σ̄)2

[ω−(E2+Δ)](ω−E2)
gσ2,σ̄2
2p+1 , (21)

where the coefˇcients Mijσ and Pijσ , given in the table, are statistical averages following
from equal time commutator terms.

The proof is immediate if we write the equations of motion of the Green functions
mentioned in the l. h. s. and iterate once.

Equal time commutators arising in the recurrence relations (18)Ä(21) as coefˇcients of ν2p−1
ij and ν2p

ij

ν2p−1
ij Qj = X20

j Qj = Nj ν2p
ij Qj = X20

j Qj = Nj

M I
ijσ −〈Xσ2

i X2σ
j 〉 〈Xσ2

i X0σ
j 〉 P I

ijσ 0 0

M II
ijσ 〈X0σ

i Xσ0
j 〉 〈X0σ

i Xσ2
j 〉 P II

ijσ 〈Xσσ
i (X00

j − X22
j )〉 〈Xσσ

i X02
j 〉

M III
ijσ −〈X0σ̄

i X2σ
j 〉 〈X0σ̄

i X0σ
j 〉 P III

ijσ −〈X02
i X20

j 〉 0

M IV
ijσ 〈Xσ2

i X σ̄0
j 〉 〈Xσ2

i X σ̄2
j 〉 P IV

ijσ 〈X00
i (X00

j − X22
j )〉 2〈X00

i X02
j 〉

PV
ijσ 〈X02

i X20
j 〉 0

PVI
ijσ 〈X22

i (X00
j − X22

j )〉 2〈X22
i X02

j 〉

The p-form class invariance of the mentioned Green functions is a straightforward con-
sequence of the commutation and multiplication rules satisˇed by the Hubbard operators. It
allows the derivation of the statistical averages 〈X02

i X20
j 〉 and 〈X02

i Nj〉 as power series of
the small parameters of the model K11νij , K22νij , and K21νij .

While the coefˇcients of the odd powers of the series expansions are obtained in terms of
GMFA Green functions, those of the even powers are still deˇned in terms of Green functions
beyond GMFA. From the point of view of the practical implications, it is an academic question
whether it would be possible to express them in terms of GMFA Green functions as well.
The lowest order approximations provide the most important contributions to the observables.
The question is whether the corresponding statistical averages quoted in the table are really
signiˇcant or not. This point is discussed in the next section.
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3. SIGNIFICANT LOWEST ORDER TERMS

The results derived in the previous section show that the statistical averages 〈X02
i Qj〉 are

obtained as power series of νij , with the contributions coming from the poles of the Green
functions given by integrals of the form

Imn(ω1, ω2) = I−mn(ω1, ω2) − I+
mn(ω1, ω2), m + n � 2, m, n > 0, (22)

I∓mn(ω1, ω2) =
i

2π

+∞∫

−∞

dω

1 − e−βω

1
[ω−(ω1 ∓ iε)]m

1
[ω−(ω2 ∓ iε)]n

. (23)

The calculation of these integrals is standard: they are extended in corresponding complex
half-planes z = (ω,�z ≶ 0), with half-circles at the three existing poles: z = 0, z = ω1 ± iε,
z = ω2 ± iε. The obtained contour integrals are calculated in two alternative ways: using the
residue theorem, and estimating them along the pieces of the involved contours.

Retaining the lowest order contributions to 〈X02
i Qj〉 only, we get:

〈X02
i Qj〉 = I20(E2)c

σ2,0σ
1 + I11(E2, 2E1)c

0σ̄,0σ
1 + I11(E2 + Δ, E2)c

σ2,σ̄2
1 + O(ν2

ij),

cσ2,0σ
1 = −(2K11νij)M I

ijσ + (2K22νij)M II
ijσ ,

c0σ̄,0σ
1 = 2σ(2K21νij)M III

ijσ ,

cσ2,σ̄2
1 = 2σ̄(2K21νij)M IV

ijσ ,
(24)

I20(E2) =
1

βE2
2

− β e−βE2

(1 − e−βE2)2
,

I11(E2,2E1) =
1

2βE1E2
− 1

Δ
1

1 − e−2βE1
+

1
Δ

1
1 − e−βE2

,

I11(E2 + Δ,E2) =
1

βE2(E2 + Δ)
+

1
Δ

1
1 − e−β(E2+Δ)

− 1
Δ

1
1 − e−βE2

.

Theorem 2. The lowest order power series expansions of the correlation functions 〈X02
i X20

j 〉
and 〈X02

i Nj〉 are obtained in terms of GMFA correlation functions as follows:
For hole-doped systems:

〈X02
i X20

j 〉 � 2σ̄
K21νij

Δ
〈Xσ2

i X σ̄0
j 〉; 〈X02

i Nj〉 � 2σ̄
K21νij

Δ
〈Xσ2

i X σ̄2
j 〉. (25)

For electron-doped systems:

〈X02
i X20

j 〉 � 2σ̄
K21νij

Δ
〈X0σ̄

i X2σ
j 〉; 〈X02

i Nj〉 � 2σ
K21νij

Δ
〈X0σ̄

i X0σ
j 〉. (26)

Indeed, for hole-doped systems, the Fermi level lies in the upper singlet subband, such that we
get the energy parameter estimates E1 � E2 � −Δ. This yields I20(E2) � I11(E2, 2E1) � 0,
while I11(E2 + Δ, E2) � (2Δ)−1, therefrom Eqs. (25) follow.

For electron-doped systems, the Fermi level lies in the upper hole subband, and this yields
the energy parameter estimates E1 � 0, E2 � Δ. This results in I20(E2) � I11(E2 +
Δ, E2) � 0, while I11(E2, 2E1) � (2Δ)−1, hence Eqs. (26) follow.
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4. DISCUSSION OF THE RESULTS

Corroboration of Eqs. (8) to (14) with the results stated in Theorem 2 show that, both
in hole-doped and in electron-doped cuprates, the dominant contributions to the singlet hop-
ping and the exchange superconducting pairing are second-order effects described by GMFA
correlation functions. Equations (25) and (26) point to the occurrence of the same small
parameter, K21νij/Δ, for the description of all the involved higher order correlation func-
tions with, however, speciˇc GMFA correlation functions. Thus, the singlet hopping proceeds
by i � j jumps of a particle from the upper energy subband to the lower energy subband.
The anomalous superconducting pairing involves two spin states at neighbouring lattice sites
i and j, both with energies in that subband which crosses the Fermi level. However, while
both processes are given by small O(ν2

ij) quantities, their consequences are quite different.
The non-vanishing singlet hopping brings a small correction to the energy terms entering

the normal part of Ãijσ . Therefore, the decoupling ansatz 〈X02
i X20

j 〉 ≈ 〈X02
i 〉〈X20

j 〉 = 0
used in [1] does not substantially modify the general picture obtained for the normal state.

On the other hand, the derivation of the correct GMFA contribution to 〈X02
i Nj〉 is essential

for understanding the pairing mechanism emerging within the model. Under the assumption
of uniform hopping, K11 = K22 = K21 = K , Eqs. (11)Ä(14) and (25), (26) result in the
well-known AFM exchange interaction energy of the tÄJ model, J = 4t2/Δ, for spins on
nearest neighbour sites and an effective hopping parameter t = tpdKν1.

In fact, the occurrence of different hopping coefˇcients in Eqs. (8)Ä(14) (Ref. [1], reported
the values K22 � −0.477, K11 � −0.887, K12 = K21 � 0.834) points to the existence of
three asymmetric processes depending on the initial and ˇnal energy subbands connected by
the higher order correlation functions 〈X02

i X20
j 〉 or 〈X02

i Nj〉, respectively.
Finally, the present analysis strengthens the discussion in [4] concerning the unreliability

of the approach of reference [7] to the derivation of a GMFA expression for 〈X02
i Nj〉 based

on the use of the Roth decoupling procedure which uncouples the Hubbard operators at the
same site,

〈X02
i Nj〉 = 〈X0σ

i Xσ2
i Nj〉 = 〈ciσciσ̄Nj〉 → 〈〈ciσ(t)|ciσ̄(t′)Nj(t′)〉〉.

Therefore, the consequences following from this decoupling, namely that special intersti-
tial excitations (®cexons¯) should appear and play an important role in the occurrence of
superconductivity in cuprates, are artifacts of the procedure without actual physical meaning.

CONCLUSIONS

We reported a method for evaluating two higher order correlation functions describing
respectively the singlet hopping and the superconductivity pairing within the two-time Green
function approach to the solution of the two-band singlet-hole Hubbard model (3) considered
by Plakida et al. [1, 4] for the description of the physical properties of the high-Tc super-
conductivity in cuprates. Both in hole-doped and in electron-doped cuprates, the dominant
contributions to the two processes are found to be second-order effects described by GMFA
correlation functions.

The derived results are rigorously established. For the two discussed processes, they rest
on the occurrence of speciˇc invariant classes of Green functions with respect to the operators
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of the Hubbard 1-forms entering the equation of motion (17), allowing therefrom power series
expansions in terms of the small Wannier overlap coefˇcients νij .

The singularity coming at the Fermi level from the thermodynamic factor (1 − e−βω)−1

is canceled by a corresponding singularity coming from the pole of the Green function at the
Fermi level. From the point of view of the properties of the functions of complex variables,
at ω = 0 there arises a pole of the second-order yielding the ˇnite second-order contributions
found in the previous section.

We have to remark that the existence of a non-vanishing commutator [X02
i , H ] is essential.

Since [Ni, H ] = [Xσσ̄
i , H ] = 0, the method described in this paper cannot be used for the

GMFA evaluation of the chargeÄcharge and spinÄspin correlation functions.
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