
�¨¸Ó³  ¢ �—�Ÿ. 2008. ’. 5, º3(145). ‘. 458Ä465

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…

THE BOUNDARY LAYER PROBLEM IN BAYESIAN
ADAPTIVE QUADRATURE

Gh. Adam, S. Adam
Joint Institute for Nuclear Research, Dubna

Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH),
MagureleÄBucharest, Romania

The boundary layer of a ˇnite domain [a, b] covers mesoscopic lateral neighbourhoods, inside [a, b],
of the endpoints a and b. The correct diagnostic of the integrand behaviour at a and b, based on its
sampling inside the boundary layer, is the ˇrst from a set of hierarchically ordered criteria allowing
a priori Bayesian inference on efˇcient mesh generation in automatic adaptive quadrature.

�μ£· ´¨Î´Ò° ¸²μ° μ£· ´¨Î¥´´μ£μ μÉ·¥§±  [a, b] ¶μ±·Ò¢ ¥É ³¥§μ¸±μ¶¨Î¥¸±¨¥ ¡μ±μ¢Ò¥ μ¡² ¸É¨
¢´ÊÉ·¨ μÉ·¥§±  ¸ ±μ´Í ³¨ a ¨ b. Šμ··¥±É´ Ö ¤¨ £´μ¸É¨±  ¶μ¢¥¤¥´¨Ö ¶μ¤Ò´É¥£· ²Ó´μ£μ Ê· ¢´¥´¨Ö ¢
a ¨ b, μ¸´μ¢ ´´ Ö ´  ¥£μ ¢Ò¡μ·±¥ ¢´ÊÉ·¨ ¶μ£· ´¨Î´μ£μ ¸²μÖ, Ö¢²Ö¥É¸Ö ¶¥·¢μ° ¨§ ´ ¡μ·  ¨¥· ·Ì¨Î¥-
¸±¨ Ê¶μ·Ö¤μÎ¥´´ÒÌ ±·¨É¥·¨¥¢, ¤μ¶Ê¸± ÕÐ¨Ì a priori ¡ °¥¸μ¢¸±¨° ¢Ò¢μ¤ μ¡ ÔËË¥±É¨¢´μ° ¸¥ÉμÎ´μ°
£¥´¥· Í¨¨ ¢  ¢Éμ³ É¨Î¥¸±μ°  ¤ ¶É¨¢´μ° ±¢ ¤· ÉÊ·¥.

PACS: 02.60.Jh; 02.50.Tt; 02.60.Ph

INTRODUCTION

The boundary layer problem in numerical quadrature is the ˇrst, and probably the most
difˇcult to solve, from a Bayesian chain aiming either to implement the automatic mesh
generation by the adaptive quadrature methods under sound expectation of reliable local
quadrature rule {q, e} outputs, or to provide early detection of the origins of code failure.

The need of such a stringent requirement, which goes well beyond the usual implemen-
tation of the automatic adaptive quadrature rules (see, e.g., [1Ä3]) arises in the numerical
exploration of the predictions of models describing phase transitions in complex physical
systems, which critically depend on the realization of (unknown in advance) values of some
speciˇc parameters (like, e.g., the hole or electron doping level in high-Tc superconducting
materials [4]). The solution of the resulting parametric integrals makes use of the existing
library programs the reliability of the outputs of which is heavily based on user's ability to
choose the suitable procedure from a proposed menu. The impossibility to know in advance
the detailed behaviour of the integrand function over the whole class of parametric integrals
forces the use of a trial and error approach which may result in unnoticed unreliable {q, e}
pairs and, consequently, bad output failure.

The a posteriori assessment of the reliability of the {q, e} pair over the current integration
subrange [5,6] solves only half of the problem since the code remains highly inefˇcient. The
a priori veriˇcation of the conditioning of the integrand proˇle at the quadrature knots, which
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was proposed by us some time ago [7], needed, in fact, a whole set of hierarchically ordered
criteria providing Bayesian inference [8] on the status of the gradually generated integrand
proˇle at newly added quadrature knots.

The root of the resulting Bayesian inference decision tree is the diagnostics of the behav-
iour of the integrand function f(x) at the boundaries a and b of the ˇnite integration domain
[a, b]. To set it, a suitable integrand sampling is required inside a mesoscopic neighbourhood
of the boundary layer of [a, b].

The present paper generalizes the analysis done in [9] over minimal four-point partitions
inside the mesoscopic regions associated to each of the ends a and b of [a, b]. By allowing
an unrestricted four-point partition, the diagnostic failures stemming from the inadequacy
of a frozen integrand sampling are avoided, resulting in analysis reliability enhancement for
difˇcult integrand functions.

1. DIAGNOSTICS AND BAYESIAN INFERENCES FROM THE BOUNDARY LAYER
ANALYSIS

Let xr denote either fl(a) or fl(b), the 
oating point representations of the endpoints a
and b of [a, b]. The analysis establishes the status of the value fxr = fl(f(xr)), the �oating
point representation of the computed value of the integrand, f(xr) ∈ R, as follows:

(i) Diagnostics: Smooth integrand behaviour.
Bayesian inference: Regular quadrature knot mesh over [a, b] can be generated starting

from the xr endpoint.
Supplementary information: The analysis also generates an estimate of the lateral derivative

f ′(xr) inside [a, b]. This will serve to the formulation of acceptance check criteria for the two
quadrature knots which lie nearest and next nearest to xr. In case of rejection, the decision to
perform the immediate subrange subdivision of [a, b], without generating the integrand proˇle
at the remaining quadrature knots, is taken.

(ii) Diagnostics: Endpoint or outer singularity of f(x) or its derivatives.
Bayesian inference: Slow convergence is to be expected under subrange subdivision. Use

of a speciˇc subrange subdivision procedure based on bisection together with a convergence
acceleration procedure (e.g., the epsilon extrapolation algorithm) are a must.

(iii) Diagnostics: Inner nearby singularity.
Bayesian inference: The occurrence of an offending inner singular point x0 near xr is to

be further conˇrmed. Under afˇrmative diagnostics, x0 is to be located to machine accuracy.
The input integral is then split into two integrals, over [a, x0) and (x0, b], each being further
processed following the procedure adequate for endpoint singularity.

(iv) Diagnostics: Inner nearby ˇnite jump.
Bayesian inference: Further conˇrmation of the existence of an offending inner jump point

x0 near xr is necessary. Under afˇrmative diagnostics, x0 is to be located to the machine
accuracy. The input integral is then split into two integrals, over [a, x−

0 ) and (x+
0 , b], with

f(x∓
0 ) and f ′(x∓

0 ) taking values equal to the lateral limits of f(x) and f ′(x) at x0. The
resulting integrals over the two subintervals are to be solved for smooth f(x).

(v) Diagnostics: Irregular behaviour.
Bayesian inference: The output of the automatic procedure could hardly be taken for

reliable. Clariˇcation of the offending integrand behaviour is a must.
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(vi) Diagnostics: Smooth integrand behaviour at both ends a and b.
Bayesian inference: Early check for the presence of an oscillatory or odd integrand is

useful. If an afˇrmative diagnostics is issued, then deˇne a ceiling accuracy of the expected
output, originating in severe precision loss due to heavy cancellation by subtraction.

2. UNRESTRICTED LEAST SQUARES ANALYSIS

Theorem 1. The function f : [a, b] ⊂ R → R, f = f(x), is smooth inside a lateral
mesoscopic neighbourhood V (xr) ⊆ [a, b] of the reference abscissa xr denoting the 
oating
point representation of either the end a or the end b of [a, b], provided the computed values
of the ˇrst-order divided differences of f(x) over any abscissa sampling inside V (xr) are
independent of the choice of the sampling abscissas.

Remark 1. The result stated in Theorem 2 essentially follows from the property that, for
any reference abscissa xr ∈ D ⊂ R of a continuous twice differentiable function f : D →
R, f = f(x), a nonvanishing neighbourhood V (xr) ⊆ D does exist inside which the linear
Taylor series expansion of f(x) around f(xr) holds true within some predeˇned accuracy
threshold 0 < ε � 1.

The numerical check of the continuity of f(x) at the ends of the integration domain [a, b]
can only be done from a sampling of its computed values, {fi = fl(f(xi))|i = 0, 1, . . . , m},
over a set of m + 1 machine number arguments Sm(xr) = {xi ∈ V (xr)|i = 0, 1, . . . , m},
xr ∈ Sm(xr), m � 3. If {f(xi))|i = 0, 1, . . . , m} denote the actual values of f(xi) over
Sm(xr), then, due to the round-off, f(xi) − fi �= 0 in general. As a consequence, the best
information on the smoothness properties of f(x) at xr following from the set {xi, fi} is
obtained from the scrutiny of the properties of a second degree polynomial least squares ˇt
to the 
oating point data.

A problem in terms of machine number abscissas is obtained by the scale transformation

xi = x0 + ξihr, i = 0, 1, . . . , m; ξi ∈ Z; ξ0 = 0, (1)

where hr denotes the algebraic distance from xr to its nearest machine number inside [a, b].
This leads to the second degree ˇtting polynomial

y2(xi) = α0π0(ξi) + α1π1(ξi) + α2π2(ξi), (2)

spanned by the orthonormal basis polynomials πk(ξi), k = 0, 1, 2.
A linear polynomial ˇtting over Sm(xr) is obtained provided α2π2(ξ) is negligible every-

where at ξ ∈ [ξmin, ξmax], ξmin = min{ξ0, ξ1, . . . , ξm}, ξmax = max{ξ0, ξ1, . . . , ξm}. Making
all the calculations requested by the least squares procedure then results in the statement of
the theorem, QED.

Corollary 1. If we assume a minimal mesh sampling S3(xr) characterized by the abscissa
set ξ0 = 0, ξ1 = p > 0, ξ2 = μp > ξ1, ξ3 = q, |ξ3| � ξ1, then the following smoothing
criteria emerge:

d20 − μd10 ≈ 0, μd30 −
q

p
d20 ≈ 0,

q

p

[q

p
d10 − d30

]
≈ 0, dij = fi − fj. (3)
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Corollary 2. If we assume a minimal mesh sampling S3(xr) characterized by the abscissa
set ξ0 = 0, ξ1 = p ∼ ξ2 = q, ξ3 = r, max{ξ1, ξ2} � ξ3, then the following smoothing
criteria emerge:

pd20 − qd10 ≈ 0, qd30 − rd20 ≈ 0, rd10 − pd30 ≈ 0. (4)

Corollary 3. If the analysis issued the diagnostics of smooth f(x) at the endpoint xr, then
the following estimate for the lateral ˇrst-order derivative f ′(xr) inside [a, b] holds,

f ′(xr) ≈
1

(m + 1)δ̄2hr

m∑
i=1

δidi0, (5)

δi = ξi − ξ̄, ξ̄ =
1

m + 1

m∑
i=0

ξi, δ̄2 =
1

m + 1

m∑
i=0

δ2
i . (6)

3. DIAGNOSTIC UNIQUENESS

To allow useful inferences, the analysis done in the previous section has to be supple-
mented, on one side, with a quantitative measure of the smallness of the differences deˇned
in Corollaries 1 and 2 and, on the other side, with qualitative criteria able to single out those
speciˇc unique features which characterize other integrand behaviours inside a mesoscopic
neighbourhood of xr.

3.1. Smoothness Threshold. The practical implementation of the smoothness criteria (3)
and (4) compares the magnitudes of the expressions entering the left-hand sides of these
equations with an integrand-dependent upper threshold,

0 < τf = τ0ε0 max{|f0|, |f1|, |f2|, |f3|}, (7)

where ε0, the machine epsilon with respect to addition, deˇnes the machine accuracy depen-

dent parameter of the solution, while τ0, 0 < τ0 � ε
−1/2
0 , is a heuristic parameter intended to

overcome possible diagnostic errors coming from the normal roundoff noise. In practice, we
have found that a value τ0 = 210 resulted in adequate diagnostics for all the tested smooth
case study functions f(x).

The diagnostic reliability decreases as long as the magnitudes of one or more of the
quantities entering Eqs. (3) or (4) get near τf .

3.2. Endpoint or Outer Singularity. The basic features of such a behaviour are: inward
monotonically decreasing |f(x)| under di,i−1di+1,i > 0; steep variation of f(x) over argument
distances separated by one or a few machine numbers; inward monotonically decreasing
|f ′(x)|.

If the sampling of Corollary 1 is generated, then the addition of two supplementary
abscissas at (ξ1 + ξ3)/2 and (ξ1 + ξ2)/2, respectively and the conˇrmation of the above-
mentioned three features once again over the resulting smaller subranges distinguishes singular
behaviour from an inner ˇnite jump near xr.
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3.3. Inner Nearby Singularity. The features of this kind of behaviour are mirror re
ected
with respect to those of an endpoint or outer singularity.

3.4. Inner Nearby Finite Jump. There are two hints suggesting this diagnostics. First,
the sharp increase of the magnitude of one of the ˇrst-order divided differences approximating
f ′(x) over the subranges deˇned by sampling. Second, the feature gets enhanced if a ˇner
partition is deˇned over the subrange in question.

3.5. Irregular Behaviour. This negative diagnostics is usually associated with the occur-
rence of rapid oscillations of f(x) which make the usual local quadrature rules ineffective.

4. CODE ROBUSTNESS: HARDWARE AND SOFTWARE ENVIRONMENT

The analysis described above yields diagnostics issued by a code which runs within an
environment deˇned by the hardware and software at hand. The code robustness, reliability,
and portability are secured provided several delicate points are adequately solved.

The last code versions were run on several PCs with Intel 4+, AMD32, or AMD64 proces-
sors, Linux 2.4 or Linux 2.6+ operating systems, and the GNU gcc compiler incorporating
Fortran 77. Early code versions were also run on SUN workstations at BLTPÄJINR, or under
Microsoft XP OS.

The study of the conformity of the hardware and software of the above-mentioned systems
to the IEEE 754 standard which governs the 
oating point arithmetic (see, e.g., [10, 11]),
revealed the occurrence of four instances where the requirements of the standard were more
or less frequently infringed: (i) length of the signiˇcand; (ii) �oating point comparisons;
(iii) code optimization; (iv) under�ow threshold.

4.1. Length of the Floating Point Double Precision Signiˇcand. Under the standard
compliant value of the machine epsilon with respect to addition, ε0 = 2−53, often analysis
failure has been noticed. This was identiˇed to stem from the loss of the last, assumed
signiˇcant, 53rd bit under reuse of exact data after their RAM/cache storage.

The simplest possible case study of hidden bit loss is illustrated in Figure: the quantities
ak = 1 + kε0, ε0 = 2−53, k = −20(1)20, are computed and stored in an array (to force
RAM/cache storage) and then the differences δk+1,k = ak+1−ak are plotted. Under IEEE 754
standard observance, the constant answer, δk+1,k = ε0 should have been obtained. However,
this result is obtained indeed under ε0 = 2−52.

Figure, b illustrates the same effect when exploring integrand behaviour around a singular
point on an example taken from QUADPACK, [1, p.110],

f(x) =
1

|x2 + 2x − 2|1/2
=

1√
|(x − xp)(x − xm)|

,

where
xp =

√
3 − 1, xm = −

√
3 − 1. (8)

The values {f(xk); xk = fl(xp)(1 + kε0); ε0 = 2−53| k =−20(1)20} have been computed
and compared with the exact ones. Several spuriously equal output pair are noticed at pairs of
assumed neighbouring machine number arguments, which spoil the reliability of the analysis.

Increase of ε0 to ε0 = 2−52 rules out such spurious pairs (Figure, c).
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In
uence of the machine epsilon deˇnition on output reliability. a) Check of the fulˇlment of the
reliability criterion fl(1 + (k + 1)ε0) − fl(1 + kε0) = ε0. (Data set ®o53¯ shows that our system is
not compliant to the IEEE 754 standard value ε0 = 2−53; data set ®o52¯ shows that ε0 = 2−52 is the
right choice.) bÄd) Comparison of two code outputs with the true results for the case study function (8):
b) spuriously equal function pair values occur under ε0 = 2−53 at arguments intended to represent
neighbouring machine numbers; c) the spuriously equal pairs disappear, but heavy precision loss and
output precision path dependence are still present near the singular point xp =

√
3−1 under ε0 = 2−52;

d) all difˇculties are solved if singularity is moved to the origin, where ε0 = u = 2−1023. (Legend
preˇxes: ®t¯ Å true results; ®c¯ Å unique 
oating point value of xp used inside all procedures; ®l¯ Å
calculation of f(x) is done using a locally processor produced approximation for xp, which is more
accurate than that transferred in-between other procedures)

4.2. Floating Point Comparisons. In the example (8), fl(xp) may be either transferred
from a procedure to another one using the fl52(xp) value which retains the most signiˇcant
52 binary bits in the signiˇcand, or it may be directly computed in CPU from the original
expression xp =

√
3 − 1, in which case the processor stored fl64(xp) value retains the most

signiˇcant 64 binary bits. The IEEE 754 standard asks that fl64(xp).EQ.fl52(xp) =.TRUE.
None of the two compilers available to us (f77, C++ gcc) did obey to this requirement.

Since the use of 
oating point comparison was unavoidable, special care was taken to
exclude all the possible fl52 to fl64 comparisons.

4.3. Code Optimization by the Compiler. We might try to write a code in which use
of fl52 values is always secured in comparison operations by asking the transfer of each
variable entering such an operation to RAM/cache, followed by their transfer back to CPU. In
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its search for ®efˇciency¯ increase, the code optimization by the compiler ˇnds such a trick
®unnecessary¯, thus spoiling the output correctness. The observation is not singular [12].

4.4. The Under�ow Threshold. On all but one computer at our disposal, the standard
value u = 2−1023 was found to be right. However, on one of the mentioned SUN workstations
the code crashed at u = 2−1023, while the value u = 2−1022 was found to be OK.

4.5. Catastrophic Precision Loss in the Neighbourhood of a Non-zero Singular Point.
Two supplementary features present in Figure b, c deserve consideration: (i) The computed
function values are different from the exact ones starting with the most signiˇcant bit. (ii)
The use of the primary QUADPACK expression listed in Eq. (8) (data labelled ®l53¯, ®l52¯)
infringes the left-right symmetry of the exact data.

In spite of this severe precision loss due to cancellation by subtraction, correct inferences
based on the use of the unique features characterizing a singular behaviour (Subsec. 3.2) are
still possible due to the fact that the computed ®wrong data¯ preserve the ordering relationships
characteristic to the ®true data¯.

If a substitution of variable which moves the singularity to the origin is possible, then all
the difˇculties enumerated at Subsecs. 4.2, 4.3, and 4.5 are completely removed (Figure, d).

CONCLUSIONS

The boundary layer problem asks for accurate and reproducible diagnostics of integrand
f(x) behaviour at the endpoints a and b of a ˇnite integration domain [a, b].

In the present paper we have discussed several critical issues which dramatically in
uence
code robustness and reliability. Generalizations of the results previously reported in [9] allows
signiˇcant improvement of code quality by:

(i) Deˇnition of smooth behaviour from an unrestricted least squares analysis over small
(mesoscopic) neighbourhoods of the endpoints a and b. This secures the derivation of
continuity criteria valid everywhere over the mesoscopic range where the analysis is done.

(ii) Formulation of qualitative diagnostic criteria which reliably single out the various
kinds of integrand behaviour even under severely damaged accuracy of the computed data.

(iii) Derivation of accurate tests for reliable deˇnition of the machine epsilon with respect
to the addition.

(iv) Identiˇcation of the critical hardware and software features which could spoil the
correctness of the diagnostics by deviation from the IEEE 754 standard and code reformulation
such as to become insensitive to such a drawback of the computing environment.

The correct solution of the boundary layer problem is the ˇrst from a set of hierarchically
ordered problems the solutions of which should allow a priori Bayesian inferences on efˇcient
and reliable mesh generation within automatic adaptive quadrature. The solution of such
problems is planned to be discussed in subsequent reports.
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