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ACCURATE NUMERICAL SOLUTIONS TO STATIONARY
FREE SURFACE PROBLEMS FROM CAPILLARITY

C.-I. Gheorghiu
T. Popoviciu Institute of Numerical Analysis, Cluj-Napoca, Romania

The paper considers two static problems from capillarity. The ˇrst one consists in the determination
of the surface of a liquid in a capillary tube and the second in the computation of the shape of a sessile or
pendent drop of liquid of a given volume, both conˇgurations being considered in the gravitational ˇeld.
From the mathematical point of view both problems are nonlinear two-point boundary value problems
which include in their formulations additional geometrical unknowns, i.e., the so-called free boundary
value problems. Computationally they are laborious problems since they involve non-normal Jacobian
matrices. The resulting numerical difˇculties are considerably reduced by treating these problems by
a collocation method in conjunction with the continuation with respect to the parameters. The method
is implemented by the MATLAB code bvp4c. The numerical evaluations of the free surfaces are in
reasonable accordance with asymptotic estimations.

� ¸¸³ É·¨¢ ÕÉ¸Ö ¤¢¥ ¸É É¨Î¥¸±¨¥ § ¤ Î¨ É¥μ·¨¨ ± ¶¨²²Ö·´μ¸É¨. �¥·¢ Ö § ±²ÕÎ ¥É¸Ö ¢ μ¶·¥-
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¢¨¸ÖÎ¥° ± ¶²¨ ¦¨¤±μ¸É¨ § ¤ ´´μ£μ μ¡Ñ¥³ . �¡¥ ±μ´Ë¨£Ê· Í¨¨ · ¸¸³ É·¨¢ ÕÉ¸Ö ¢ £· ¢¨É Í¨μ´´μ³
¶μ²¥. ‘ ³ É¥³ É¨Î¥¸±μ° ÉμÎ±¨ §·¥´¨Ö μ¡¥ § ¤ Î¨ ¶·¥¤¸É ¢²ÖÕÉ ¸μ¡μ° ´¥²¨´¥°´Ò¥ ¤¢ÊÌÉμÎ¥Î´Ò¥
±· ¥¢Ò¥ § ¤ Î¨, ±μÉμ·Ò¥ ¢ ¸¢μ¥° ¶μ¸É ´μ¢±¥ ¸μ¤¥·¦ É ¤μ¶μ²´¨É¥²Ó´Ò¥ £¥μ³¥É·¨Î¥¸±¨¥ ´¥¨§¢¥¸É-
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Í¨° ¸ ³¥Éμ¤μ³ ¶·μ¤μ²¦¥´¨Ö ¶μ ¶ · ³¥É· ³. Œ¥Éμ¤ ·¥ ²¨§μ¢ ´ ¢ ¶·μ£· ³³¥ MATLAB ¸ ¶μ³μÐÓÕ
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INTRODUCTION

In many cases, problems in viscous 
uid mechanics can be described by boundary value
problems for partial differential equations. In some cases, by using the geometrical symmetries
of the conˇgurations such problems can be reduced to two-point boundary value problems.
When there are additional geometrical unknowns we speak of free boundary value problems
(FB for short). More speciˇcally, these geometrical unknowns can be some values of the
unknowns on subsets of boundary points or even the coordinates of the boundary points
themselves. In this paper we solve numerically two classes of static capillary FBs. These
problems are deˇned as FBs on which we must take into account capillary forces, i.e., forces
due to the intermolecular attractions which have a nonvanishing resultant at the boundary of
the liquid.
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The ˇrst one is to determine the liquid-air interface (surface) whose mean curvature
is proportional to its height above the reference plane, and which makes with a container
bounding wall a prescribed constant angle. The second one is to ˇnd the shape of a sessile
or pendent liquid drop of a given volume which rests in the gravitational ˇeld. The actual
computations were carried out for symmetric cases. The equations of these problems, as
well as the analytic properties of the solutions (existence, uniqueness and asymptotic behavior
for Bond number approaching 0), were established in the monograph of R. Finn [1]. Both
problems lead to nonlinear second-order two-point free boundary value problems; i.e., the
values of the solution at some boundary points are unknown but some values of the derivatives
are supplied in order to close the problem. Their solutions depend on the nondimensional
Bond number (Bo for short) which is a measure of the ®size¯ of the conˇguration; i.e., it is
the ratio of gravitational forces to the capillary (superˇcial) forces. The main computational
difˇculty with these problems consists in the fact that they involve non-normal Jacobian
matrices. A test problem with a Jacobian matrix in close form is considered in order to
underline these aspects.

The problems are solved numerically making use of a collocation type method, based
on cubic interpolation, and introduced in the paper of Kierzenka and Shampine [3]. It is
implemented by the MATLAB code bvp4c and provides a smooth solution continuous along
with its ˇrst derivative. In contrast with well-known shooting, this solution is approximated
on the whole interval and the boundary conditions are taken into account at all times. As the
resulting nonlinear system of algebraic equations is solved iteratively the question of coming
up with sufˇciently accurate initial guess of unknowns is particularly discussed.

1. A TEST PROBLEM

In their paper [4], Miele, Aggarwal and Tietze consider the following two-point boundary
value problem introduced by Troesch:

xt = y, yt = k sinh (kx) , 0 < t < 1, x(0) = 0, x (1) = 1. (1)

The Jacobian matrix

J =
(

0 k2 cosh (kx)
1 0

)

is characterized by the eigenvalues λ = ±k
√

cosh (kx), which at the endpoints become

λ (0) = ±k and λ (1) = ±k
√

cosh (k).
For relatively low values of k, i.e., 0 < k � 4, the above eigenvalues remain relatively

small and the problem can be solved employing the usual ˇnite difference or the shooting
methods. On the other hand, for relatively large values of k, i.e., 5 � k � 10, the above-
quoted authors make use of a special multipoint boundary-value technique in order to solve
the problem. They observe that the problem is characterized by the ˇrst integral

z := cosh (kx) − y2/2 = const (2)

and use that as a ®tool¯ to check the accuracy of the numerical solution. In our numerical
experiments performed on a Pentium IV, 3.0G, PC, the constancy of z is veriˇed to a maximal
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error equal to 4.082997e− 06 for k = 5, to an error which equals 7.651421e− 03 for k = 10
and to an error equal to 6.602193e + 00 corresponding to k = 15. Our numerical results are
with one signiˇcant ˇgure worse than those reported in [4, Table II, p. 126], for k = 5 and
k = 10, respectively. For k larger than 16 the accuracy in the conservation of z is lost rapidly.
In spite of this fact, even at these values of k our numerical solutions behave correctly in the
left neighborhood of t = 1. They show a boundary layer type behavior in this region.

Fig. 1. The pseudospectrum of ma-
trix J for k = 4

It is worth noting at this point that we used essentially
the technique of continuation with respect to parameter k
in order to handle the problem for k � 15. Without this
technique for such values of k the collocation equations
become unsolvable due to singular Jacobian.

Remark 1. In fact the above Jacobian matrix J is
non-normal, i.e., J∗J − JJ∗ �= 0, where ∗ stands for the
conjugate transpose of a matrix (see Trefethen [5, p. 187]).
The pseudospectrum of the matrix J , at t = 1, i.e., the spec-
trum of the randomly perturbed matrix with an arbitrary
small quantity, is depicted in Fig. 1. In our previous pa-
per [2] we introduced a scalar measure of non-normality.
It reads H (J) :=

√
ε (J∗J − JJ∗)/ε (J) and we noticed

that 0 � H (J) � 4
√

2, 0 being attained just in case of
normal (symmetric) matrices. On this scale our matrix J
is situated extremely close to the upper bound. This scalar
measure, as well as the pseudospectrum, leads us to the conclusion that the matrix J is a
genuine non-normal one.

2. THE LIQUIDÄGAS INTERFACE IN A CAPILLARY TUBE

In this section we consider static capillary liquidÄgas interfaces of liquids partly ˇlling
a vessel. More exactly, we examine the behavior of capillary surfaces in a tube with cir-
cular section of radius R = a. We assume the following system of two coupled nonlinear
differential equations and boundary conditions (see [1, p. 11]):

div (Tu) = Bo · u, in Ω,

ν · Tu = β, on Σ := ∂Ω,
(3)

where u (x, y) denotes the height over the wetted section Ω ⊂ R
2, T (u) :=

∇u√
1 + |∇u|2

,

β is known and ν is the outward normal to Σ.
Due to the symmetry with respect to the axis of the tube, on the half of the axial section,

i.e., 0 � r � 1, r := R/a, the problem reads

(
rur√
1 + u2

r

)
r

= Bo · ru, 0 < r < 1,

u (0) = p1, ur (0) = 0, u(1) = p2, cos (δ) = β, r = 1,

(4)
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where Bo := ρga2/σ, ρ and σ being respectively the density and the surface tension of the
liquid and g is the usual gravitational acceleration. The parameters p1 and p2 are unknown
and signify the heights of the liquid on the axis of symmetry and on the wall of the tube,
respectively. The boundary condition ur (0) = 0 appears due to the symmetry and δ is the
angle between the liquidÄgas interface u (r) and the wall of the tube (see Fig. 2). The problem
is effectively integrated as a ˇrst-order differential system, i.e.,

ur = v, vr = −1
r

(
v + v3

)
+ Bo · u

(
v + v3

)3/2
, 0 < r < 1,

u (0) = p1, u (1) = p2, v(0) = 0,
v (1)√

1 + v2 (1)
= β.

(5)

Fig. 2. The liquidÄgas interface

The second differential equation in (5) is singular at r = 0, but the singular coefˇcient arises
from the coordinate system and we expect a smooth solution in the neighborhood of this
point. We deal with this singularity using the technique suggested in Example 6 from [3,
p. 18Ä19]. It means that we let r → 0 in this equation and obtain the value that must be used
for evaluating the differential equation when r = 0.

The existence of symmetric solutions with prescribed angle δ has been proved and the
uniqueness theorem shows that the symmetric solutions are the only ones (see [1] and the
paper quoted there). For Bo → 0, in the same monograph, the Laplace formula, which
estimates p1, and estimations for the parameter p2 are also available. These estimations were
fairly useful in guessing the initial shape of the unknown u (r).

For Bo = 0.075 and Bo = 10, the dependence of u (r) on the angle δ is depicted in Fig. 2.

Remark 2. From computational point of view is suggestive to notice that the code bvp4c
works such that the maximal residual belongs to the range 4.563e− 007 and 7.354e− 004.
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3. THE SESSILE AND PENDENT DROPS

We consider a liquid drop of volume V resting on a horizontal plane (surface) in a vertical
gravity ˇeld and restrict our attention to the case of the contact angle δ such that 0 < δ � π/2
(see Fig. 3). The case δ > π/2 reduces to that one under the transformation u → −u.
Supposing that the drop is symmetric, the equations for the surface of the drop are

ur = v, vr = −1
r

(
v + v3

)
+ (Bo · u + λ)

(
v + v3

)3/2
, 0 < r < 1,

u (0) = p, v (0) = 0, u(1) = 0,
v (1)√

1 + v2 (1)
= β,

(6)

where λ is a Lagrangian multiplier corresponding to the volume constraint. It is shown
(see [1, p. 59Ä60]) that if δ = const, then all equilibrium surfaces are symmetric and there
is a one-to-one correspondence between capillary surfaces furnished by (4) and sessile drops
implied by (6). Our numerical results are reported in Fig. 3.

Fig. 3. The shape of the sessile drops

Remark 3. An upper bound for the existence of the solution with respect to Bo can be
obtained. The principle of virtual work applied to the energy functional of the drop of volume
V , yields a slightly modiˇed form of (3), namely

div (Tu) = Bo · u + λ, in Ω,

ν · Tu = β, on Σ := ∂Ω,
(7)

where λ is associated with the volume restriction. The volume V of the drop can be expressed
explicitly in terms of the boundary data and this property holds for general section Ω. We
integrate the ˇrst equation in (3) and introduce the boundary condition. Thus, the volume is
expressed as

V =
1

Bo
(Σ cos δ − λΩ) , (8)
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where the symbols Σ and Ω denote respectively the measures of these sets. For symmetric
solutions, (8) becomes

V =
π

Bo
(2 cos δ − λ) .

Taking into account the boundedness of cos δ the last equality implies

Bo � 2 − λ

2
1∫
0

u (r) dr

. (9)

As the Lagrangian multiplier λ is delivered by bvp4c this upper bound for Bo can be veriˇed

numerically. The results of our numerical experiments show that the quantity
2 − λ

2
1∫
0

u (r) dr

overestimates the Bo number for Bo � 10 and unfortunately underestimates that for Bo > 10.
It remains an open problem to explain why for large values of Bo this inequality is not
fulˇlled.

CONCLUSIONS

The numerical experiments reported in this paper, as well as some other which are in
progress and refers to FB problems from laminar boundary layer theory, entitle us to think
that the main difˇculty with this type of problems consists in the high non-normality of their
Jacobian matrices. The collocation method implemented by bvp4c, due to its global character,
overcomes to some extent these difˇculties. As a general remark we have to observe that
the problems corresponding to microgravity conditions, i.e., Bond number closed to zero, are
easier to be solved and the results are much more accurate than those obtained when this
number is increased.
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