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HOLLOW BEAM FORMATION IN THE INTENSE
MULTI-COMPONENT HEAVY ION BEAM CAUSED BY
BEAM SELF-FIELD

N. Kazarinov

Joint Institute for Nuclear Research, Dubna

The simulation of the hollow beam formation in the intense multi-component ion beam from ECR
source is fulfilled. The influence of the helium and hydrogen beam current on the argon and calcium
ions dynamics has been studied.
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INTRODUCTION

The initial part of the injection beam line of NSCL MSU cyclotron K500 consists of the
focusing solenoids and analyzing double focusing bending magnet. The focusing length of
the solenoid for the lighter ions (that is the ion with the smaller mass-to-charge ratio) is less
than for one injected into cyclotron. For this reason in the region between the solenoid and
the analyzing magnet the lighter ion beams have significantly smaller transverse dimensions
compared to injected beam ones. In the region out of the lighter ion beam boundary, the
defocusing field decreases as inverse distance of the ions from the axis of the beam. For big
magnitude of the lighter ion beam space charge, this leads to formation of the hollow beam
of injected ions just after analyzing magnet and increases the emittance of injected ion beam.

This effect has been observed in the computer simulation [1] and experimentally in the
NSCL injection beam line during injection of *¥CaS ions [2].

In this work the simulation of the argon and calcium beams transportation in the initial
part of the NSCL injection beam line has been performed. The influence of the helium and
hydrogen beam current on the argon and calcium ions dynamics has been studied as well.

The replacement of the focusing solenoid by triplet of the electrostatic lenses could
eliminate the effect of hollow beam formation. The parameters of such a triplet (apertures
and plate voltages) for achieving the high transportation efficiency (100%) have been found.

The simulation has been performed with the help of Multi-Component Ion Beam code
(MCIB-04) [3] created at the Joint Institute for Nuclear Research, Dubna, Russia.

This article was written in September—October 2004 during author’s work at NSCL MSU.
After this the main results of this work have been confirmed by a lot of experimental
data [5-7].
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1. SIMULATION OF THE HOLLOW BEAM FORMATION IN THE ARGON BEAM

The scheme of the initial part of the NSCL injection beam line is shown in Fig.1. The
longitudinal magnetic field in the beam line is shown in Fig. 2.
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Fig. 1. Scheme of the beam line: ECR — longi- Fig. 2. Longitudinal magnetic field in the
tudinal magnetic field of the ECR-ion source; S — beam line

focusing solenoid; AM — 90° analyzing magnet

Table 1. Argon beam parameters

Ion mass 40
Ion charge 2-12
Central (injected) charge 7
ECR extraction voltage, kV 24.43
Kinetic energy (central charge), keV/m.u. 4.3
Beam diameter, mm 8
Beam emittance (central charge), 7 mm-mrad 100
Total current, mA 2.31
Central charge current, uA 275
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Fig. 3. Argon beam spectrum. Total beam current — 2.31 mA. No — ordinal number of the ion
species; Z, A — charge and mass of the ion. Upper numbers are the currents of the different charge
states of the beam in puA
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The simulation has been performed for argon beam. The parameters of the beam are
contained in Table 1. The argon beam spectrum is shown in Fig. 3.

The computed trajectories of the particles of the argon beam are shown in Fig.4. The
magnetic field induction of the solenoid is equal to 4 kG. The lighter ions have smaller
envelopes just after the solenoid. The transportation efficiency of the “°Ar”™ ions in this case
is equal to 100%.
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Fig. 4. Argon ion trajectories
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Fig. 5. Horizontal (z) and vertical (y) envelopes of the *°Ar"* jon beam

The 4°Ar”* ion beam envelopes are shown in Fig.5. The dependence of the beam
emittance on the distance along the beam line is given in Fig. 6.

As may be seen, the increasing of the emittance begins just after the solenoid and achieves
the maximum value 250 7 mm - mrad, which is in 2.5 times greater than the initial one. The
40Ar™* ions distributions just after the analyzing magnet at the (z, ) plane (right) and (z,
2") plane (left) are shown in Fig.7.
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Fig. 7. The “°Ar"" ions distributions just after the analyzing magnet

As may be seen from Fig. 7, the °Ar™" beam has a hole and strong nonlinear distortions
of the beam emittances. In this case the appearance of the hole is connected with the presence
of the charges greater than the central one in the argon beam spectrum. For checking this
assumption, the argon beam with charges smaller than the central one have been considered.
The argon beam spectrum for this case is shown in Fig.8. The particles distributions just
after the analyzing magnet are given in Fig.9.

In the considered case the lower charge state beams have greater transversal dimensions
than the central ones. For this reason there are no both hole and nonlinear distortion of the
emittance in the “°Ar™* beam.

The appearance of the hole in the “°Ar"* beam depends on the type of the lighter ions.
In the case of the transportation of both the “°Ar?*=7* ions and the proton beams, the hole
in the “Ar”* beam disappears. The argon and proton beam spectrum is shown in Fig. 10.
The Ar"* distributions are given in Fig. 11.
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Fig. 8. Argon beam spectrum with lower charge
states. The designations are the same as in Fig.3
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Fig. 10. Argon and proton beam spectrum. The
designations are the same as in Fig.3
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Fig. 9. The “°Ar"" ions distributions just after
the analyzing magnet
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Fig. 11. The “°Ar™ ions distributions just after
the analyzing magnet
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Fig. 12. Argon and *He'* beam spectrum. The
designations are the same as in Fig.3

Fig. 13. The *°Ar™" ions distributions just after
the analyzing magnet

The hole disappears because the protons go away from the argon beam very fast and
therefore its influence on the argon ions is very small. If instead of proton beam the ion beam
with mass-to-charge ratio equal to 2 (that is 2H'* or *He?* ions) is considered, the hole in
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the °Ar"* disappears almost completely. For ion beam with mass-to-charge ratio equal to 4
(that is “He'* ions), the hole in the “°Ar”* appears again. The spectrum of the argon and
4He'* beams is shown in Fig. 12. The particles distributions just after the bending magnet
are given in Fig. 13.

2. SIMULATION OF THE HOLLOW BEAM FORMATION IN THE CALCIUM BEAM

The beam of 4°Ca and *®Ca ions is obtained in ECR-ion source with helium as plasma-
supporting gas. The parameters of the °Ca and helium beam current are contained in Table 2.

The spectrum of the “°Ca and helium ions beam is shown in Fig.14. The computed
trajectories of the particles of the “°Ca and helium beam are shown in Fig. 15. The magnetic

Table 2. “°Ca and helium beam parameters

Ion mass 40
Ton charge 2-12
Central (injected) charge 8
ECR extraction voltage, kV 24.43
Kinetic energy (central charge), keV/m.u. 4.3
Beam diameter, mm 8
Beam emittance (central charge), 7 mm - mrad 100
Total current, mA 2.028
Central charge current, uA 156
4He'* beam current, A 1000
“He®" beam current, pA 200
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Fig. 14. The spectrum of the “°Ca and helium ions beam. The designations are the same as in Fig.3
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field induction of the solenoid is equal to 4.1 kG. The transportation efficiency of the 4°Ca8+
ions in this case is equal to 100%.

The “°Ar™* ion beam envelopes are shown in Fig.16. The dependence of the beam
emittance on the distance along the beam line is given in Fig.17. As may be seen, the
emittance achieves the maximum value 180 m mm - mrad, which is 1.8 times greater than the
initial one. The *°Ca®* ions distributions just after the analyzing magnet are shown in Fig. 18.
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Fig. 15. “°Ca and helium ion trajectories
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Fig. 18. The “°Ca®" ions distributions just after the analyzing magnet. Calcium beam transportation
with helium beam
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Fig. 19. The *°Ca®" ions distributions just after the analyzing magnet. Calcium beam transportation
without helium beam
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As may be seen from Fig. 18, the °°Ca®* beam has a hole and strong nonlinear distortion
of the emittance. In contradiction to the transportation of the argon ions, the hollow beam
formation is caused by helium ions only. The simulation of the Ca beam transportation
without helium ions shows that there is no hole in the “°Ca®* in this case. The corresponding
40Ca®* ions distributions are given in Fig. 19.

3. FOCUSING BY TRIPLET OF ELECTROSTATIC LENSES

The replacement of the focusing solenoids by the triplet of the electrostatic lenses elim-
inates the hollow beam formation because of the focus length of the electrostatic lens inde-
pendent on charge-to-mass ratio of the ions obtained in the ECR-ion source. The scheme of
of the initial part of the NSCL injection beam line with  gcp AM

the focusing by the electrostatic lens triplet is shown in
Fig. 20. The entrance of the first lens coincides with the |—| Q2

beginning of the focusing solenoid in the existing beam
line (Fig. 1).

The simulation was performed in two stages. At the (') '1 é
first stage the gradients of the lenses have been fitted by Distance, m
using the code based on the moments method. This code
is the part of the program library MCIB-04 [3]. The Fig. 20. Scheme of the triplet focusing.
fitted gradients give the possibility to achieve 100%- QI-3 — electrostatic lenses
transmission efficiency through the analyzing magnet.

At the second stage the simulation was performed with the help of the macro particles code.
The argon ion trajectories calculated at second stage are shown in Fig. 21. The envelopes of
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Fig. 21. Argon ion trajectories
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the “°Ar"* beam obtained by two simulation methods are given in Fig.22. As may be seen
from Fig. 22, both methods give the same envelopes of the beam.

The magnitude of the vertical beam envelope inside the middle lens of the triplet is equal
to 80 mm. Therefore, inner diameter of lens poles must be not less than 200 mm. For such
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Fig. 24. The “°Ar"™ ions distributions just after the analyzing magnet. Electrostatic triplet focusing
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an aperture the pole voltages of the lenses are 6.7, —4.5, 4.9 kV correspondingly. The pole
face rotation angle of analyzing magnet has been reduced down to 25.2° instead of actual
value 30.7° to achieve the beam crossover at the final point of the simulation.

The dependences of the beam emittances on distance along the beam line are shown in
Fig.23. The difference between horizontal and vertical emittances arise from the coupling
caused by self-field of the non-axial symmetric rotating beam.

As may be seen from Fig.21, there are no intermediate foci of the lighter ions. For
this reason the “°Ar”* beam has no hole. This is illustrated by particles distributions shown
in Fig.24.

Decreasing of the aperture of the electrostatic lenses leads to the particle losses during
transportation. Thus, for example, for actual lens aperture @100 mm and with the mask at
the entrance of the first lens with hole @50 mm, the transmission efficiency decreases down
to 60%.
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