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RELATIVISTIC CONTRIBUTION OF THE FINAL-STATE
INTERACTION TO DEUTERON
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The contribution of the ˇnal-state interaction to the differential cross section of deuteron photodis-
integration at laboratory photon energies below 50 MeV is analyzed in the framework of BetheÄSalpeter
formalism with a phenomenological rank-one separable interaction. The approximations made are the
neglect of two-body exchange currents, negative-energy components of the bound-state vertex function
and the scattering T matrix. It has been found that the gross effect of the ˇnal-state interaction with
J � 1 comes from the net contributions of the spin-triplet ˇnal states and spin-singlet 1S+

0 state. The
relativistic results are compared with the nonrelativistic ones in every partial-wave channel. It is found
that the relativistic effects change the magnitude of the ˇnal-state interaction from several percent to
several tens of percent.
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INTRODUCTION

The investigation of deuteron photodisintegration is a direct way of probing the structure
of light nuclei. High-precision experimental data on polarization observables of the reaction
can give information about the nucleonÄnucleon (NN ) interaction. On the one hand, the
important issue related to the nuclear force is the relativistic effects, which may play an
important role in the nuclear two-body problem (the deuteron-bound state and the ˇnal-state
interaction (FSI) of the ˇnal neutronÄproton (np) state). On the other hand, in deuteron
photodisintegration, the electromagnetic (EM) form factors of nucleons are probed as well.

1E-mail: bondarenko@jinr.ru
2E-mail: burov@thsun1.jinr.ru
3E-mail: kazakovk@iˇt.phys.dvgu.ru
4E-mail: denis@iˇt.phys.dvgu.ru



18 Bondarenko S. G. et al.

Knowledge of the deuteron-bound state, the ˇnal-state interaction in two-nucleon scattering
states and two-body currents can help to estimate the half on-mass-shell behavior of the
nucleon EM form factors.

The present work is devoted to a comprehensive study of contributions to the differential
cross section caused by the relativistic structure of np scattering states. These are analyzed
in terms of the ˇeld-theoretical nonperturbative theory, based on the BetheÄSalpeter (BS)
equation. The development of previous works [1, 2] is necessary to test the sensitivity of
observables to the FSI due to the relativistic nuclear force and relativistic effects of kinematical
origin. To this end, we employ a separable interaction kernel of the NN interaction to solve
the BS equation for two Dirac particles in Minkowski space. As a result, we obtain the
relativistic deuteron vertex function in the coupled 3S1Ä 3D1 channel and the scattering T
matrix of the elastic NN scattering for the positive-energy partial-wave channels with the
total angular momentum J = 0, 1 at laboratory energies Tlab � 100 MeV [3,4].

This paper is organized as follows: in Sec. 1, we present the basic information on the
kinematics of the reaction, the invariant transition amplitude and the differential cross section.
The relativistic approach to the NN interaction is brie	y described in Sec. 2. The rank-one
separable interaction kernel is introduced in Sec. 3. In Sec. 4, we go into several points
of calculating the invariant transition amplitudes within the BS formalism. Discussions of
principle results and ˇnal remarks are in Sec. 5.

1. KINEMATICS OF THE REACTION

If we denote by |F (Pf , pf , ζf )〉 any particular neutronÄproton ˇnal state, the invariant
transition amplitude Mfi for deuteron photodisintegration in the c.m. frame being the rest
frame of the np pair

γ(q, ε) + d(Ki, ξi) → F (Pf , pf , ζf ) (1)

is given by the matrix element of the hadronic EM four-current operator Ĵµ(x) between the
initial deuteron state and ˇnal np-pair state:

Mfi = εµ(λ)〈F (Pf , pf , ζf )|Ĵµ(0)|d(Ki, ξi(md))〉, (2)

where Pf = (
√

s,0) and pf = (0, p̂) are total and asymptotic relative four-momenta of the
pair; Ki and q = Pf − Ki are the deuteron and photon four-momenta, respectively. Four
polarization four-vectors ε(λ), ξi(md) and ζf (with λ = ±1 and md = 0,±1) describe the
internal degrees of freedom of the photon, deuteron and ˇnal np system, related to the angular
momentum. All states in Eq. (2) are understood to be normalized in the covariant manner.
It should be also noted that the deˇnition of the outgoing np pair is such that, whether
the ˇnal-state interaction is switched off, it is given by an antisymmetrized product of two
positive-energy Dirac spinors.

The coordinate system is deˇned by the incoming three-momentum of the photon, q =
(0, 0, ω) with |q| = ω, which is along the z axis, and transverse polarizations ελ=±1 =
(∓1,−i, 0)/

√
2. The asymptotic relative three-momentum p̂ is characterized by the spherical

angles θp̂ and ϕp̂ in the chosen coordinate system. The z axis is also the quantization axis
for the total spin S = 0, 1 of the ˇnal np system, as well as for the polarization four-vector
ξi(md) of the deuteron.
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The c.m. energy squared s of the ˇnal np pair is related to the relative three-momentum
p̂, s = 4(p̂2 + m2), and to the photon energy Eγ in the laboratory system, being the rest
frame of the deuteron, s = M2

d + 2EγMd, where m and Md are the nucleon and deuteron
masses, respectively. The nucleon laboratory energy Tlab = (2/m)p̂2 is connected to the
laboratory photon energy as Eγ

∼= (1/2)Tlab.
The differential cross section, in the case of the unpolarized initial conˇguration, can be

written in the c.m. frame as follows:

dσ

dΩp̂
=

α

16πs

|p̂|
ω

| Mfi |2, (3)

where α = e2/4π is the ˇne structure constant and the line over | Mfi |2 denotes the
incoherent summation over λ, md and ms, being the spin projection of the ˇnal np system
in spin-triplet channels, on the quantization axis.

We assume in this work that the dynamical model of the EM current operator in Eq. (2) is
the relativistic impulse approximation not constrained by gauge invariance. For simplicity, we
do not modify this approximation by applying Siegert's theorem. This is a major drawback
of the present development, preventing us from comparing theoretical predictions of the
relativistic theory and experimental results for deuteron photodisintegration at low energies.

All details concerning the structure of the EM current operator and the initial deuteron
state could be found in Ref. [1,2], where numerical calculations of the angular distribution in
the plane wave approximation (PWA) have been done. Thus, in determining the differential
cross section (3), we are focused on the relativistic structure of the ˇnal two-nucleon system.

2. THE TWO-BODY PROBLEM IN MOMENTUM SPACE

Within the relativistic ˇeld theory, the elastic NN scattering can be described by the
scattering T matrix, which satisˇes the inhomogeneous BS equation. In momentum space,
the BS equation for the T matrix reads (in terms of the relative four-momenta p′ and p and
the total four-momentum Pf )

T (p′, p; Pf ) = V (p′, p; Pf ) +
i

4π3

∫
d4k V (p′, k; Pf )S2(k; Pf )T (k, p; Pf), (4)

where V (p′, p; Pf ) is the interaction kernel and S2(k; Pf ) is free two-particle Green's function:

S−1
2 (k; Pf ) =

(
1
2

Pf · γ + k · γ − m

)(1) (
1
2

Pf · γ − k · γ − m

)(2)

.

To perform the partial-wave decomposition of the BS equation (4), we introduce relativistic
two-nucleon basis states |aM〉 ≡ |π, 2S+1Lρ

JM〉, where S denotes the total spin, L is the
orbital angular moment and J is the total angular momentum with the projection M ; relativistic
quantum numbers ρ and π refer to the total energy-spin and relative-energy parity with respect
to the change of sign of the relative energy, respectively. Then the partial-wave decomposition
of the T matrix in the c.m. frame has the following form:

Tαβ,γδ(p′, p; Pf(0)) =
∑

JMab

(YaM (−p′)UC)αβ ⊗ (UCY†
bM (p))δγ tab(p′0, |p′|; p0, |p|; s), (5)
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where UC = iγ2γ0 is the charge conjugation matrix. Greek letters (α, β) and (γ, δ) in
Eq. (5) refer to spinor indices and label particles in the initial and ˇnal states, respectively.
It is convenient to represent the two-particle states in terms of matrices. To this end, the
Dirac spinors of the second nucleon are transposed. At this stage, T is 16 × 16 matrix in
spinor space which, sandwiched between Dirac spinors and traced, yields the corresponding
transition matrix elements between SLJ states.

The spin-angular momentum functions YaM (p) are expressed in terms of the positive- and

negative-energy Dirac spinors u
ρ=±1/2
m , the spherical harmonics YLmL and ClebschÄGordan

coefˇcients Cj m
j1m1j2m2

:

YJM :LSρ(p)UC =

= iL
∑

mLmSm1m2ρ1ρ2

C
Sρρ
1
2ρ1

1
2ρ2

CJM
LmLSmS

CSmS
1
2 m1

1
2m2

YLmL(p)uρ1
m1

(1)(p)uρ2
m2

(2)T
(−p). (6)

The superscripts in Eq. (6) refer to particles (1) and (2). In deriving the matrix elements
between a states, the ortonormalization condition for the functions YaM (p′) should be used:∫

dϕp d(cos θp)Tr
{
Y†

aM (p)Ya′M ′(p)
}
≡

≡
∫

dϕp d(cos θp)(Y†
aM (p))βα(Ya′M ′ (p))αβ = δaa′δMM ′ , (7)

where partial states a and a′ belong to the same partial channel.
The partial-wave decomposition for the interaction kernel V of the BS equation (4) can

be written analogously to Eq. (5):

Vαβ,γδ(p′, p; Pf(0)) =
∑
abM

(YaM (−p′)UC)αβ ⊗ (UCY†
bM (p))δγ vab(p′0, |p′|; p0, |p|; s). (8)

Applying the condition (7), we can obtain a system of linear integral equations of the off-shell
partial-wave amplitudes

tab(p′0, |p′|; p0, |p|; s) = vab(p′0, |p′|; p0, |p|; s)+

+
i

4π3

∑
cd

+∞∫
−∞

dk0

∞∫
0

k2d|k| vac(p′0, |p′|; k0, |k|; s)Scd(k0, |k|; s) tdb(k0, |k|; p0, |p|; s), (9)

where the two-particle propagator Sab depends only on ρ-spin indices.
The PWA and FSI contributions can be combined by introducing the relativistic scattering

amplitude for two nucleons χSms(p; pfPf ), which satisˇes the following equation:

χSms(p; pf , Pf ) = χ
(0)
Sms

(p; pf , Pf ) +
i

4π3
S2(p; Pf )

∫
d4k V (p, k; Pf )χSms(k; pf , Pf ), (10)

with pf · Pf = 0 and p2
f = −s/4 + m2 putting the outgoing particles onto the mass shell.

The ˇrst term χ
(0)
Sms

(p; pf , Pf ) in Eq. (10) is the PWA amplitude, which describes the free
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motion of two nucleons. Due to Pauli's principle, it is the antisymmetric combination of
positive-energy Dirac spinors and isovector, isocalar factors. Omitting isospin we can write
in the c.m. frame

χ
(0)
Sms

(p; pf , Pf(0)) = δ(4)(p − pf )χ(0)
Sms

(pf , Pf(0)) =

= δ(4)(p − pf )
∑

m1m2

CSmS
1
2m1

1
2m2

u(1)
m1

(p̂) u(2)
m2

(−p̂) . (11)

It is easy to rewrite the FSI contribution to the BS amplitude, the second term in Eq. (10),
from the T matrix, once the following relation is used:∫

d4k V (p, k; Pf )χSms(k; pf , Pf ) =
∫

d4k T (p, k; Pf)χ(0)
Sms

(k; pf , Pf ). (12)

The result is

χ
(t)
Sms

(p; pf , Pf ) =
i

4π3
S2(p; Pf )T (p, pf ; Pf )χ(0)

Sms
(pf , Pf ). (13)

The ultimate expression for the BS scattering amplitude of the np pair is solely deˇned by
the T matrix half on the mass-shell:

χSms(p; pf , Pf ) =
[
δ(4)(p − pf ) +

i

4π3
S2(p; Pf )T (p, pf ; Pf )

]
χ

(0)
Sms

(pf , Pf ). (14)

The partial-wave decomposition of χ
(t)
Sms

(p; pf , Pf ) can be written in the form

χ
(t)
Sms

(p; pf , Pf(0)) =
∑

LmJMa

CJM
LmSms

Y ∗
Lm(θp̂, ϕp̂)YaM (p)φa,J:LSρ=+1(p0, |p|; 0, |p̂|; s), (15)

where the radial function φ is determined by the product of the transition matrix elements t
and the two-particle propagator:

φa,J:LSρ=+1(p0, |p|; 0, |p̂|; s) = S+a(p0, |p|; s) ta,J:LSρ=+1(p0, |p|; 0, |p̂|; s). (16)

The inclusion of intermediate partial-wave channels with the negative-energy Dirac spinors
leads to large sets of two-dimensional equations in the system (9). Its solution determines
the relativistic wave function, as well as the phase shifts from the T matrix. For simplicity,
we switch off all partial-wave channels with negative-energy states and focus only on the
physical channels with the total angular moment J � 1. Splitting the channels with J = 0
and J = 1, the partial-wave decomposition for the conjugate BS amplitude has the form

χ̄
(t)
Sms

(p; pf , Pf(0)) =

=
∑

LmL′S′

C00
LmSMS

YLm(θp̂, ϕp̂) Ȳ00:L′S′(p)φ∗
0:LS,0:L′S′(0, |p̂|; p0, |p|; s)+

+
∑

MLmL′S′

C1M
LmSMS

YLm(θp̂, ϕp̂) Ȳ1M :L′S′(p)φ∗
1:LS,1:L′S′(0, |p̂|; p0, |p|; s), (17)
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Table 1. Spin-angular momentum matrices ḠaM for J � 1. p1 = (Ep,p), p2 = (Ep,−p) are
on-mass-shell four-momenta

1S+
0 γ5

3P+
0 − 1

2|p| (p1 − p2) · γ
3S+

1 −ξ∗f (M)

1P+
1

√
3

|p| p · ξ∗f (M)γ5

3P+
1

√
3

2
γ5

[
1

2
(p1 − p2) · γ ξ∗f (M) · γ − p · ξ∗f (M)

]
1

|p|
3D+

1 − 1√
2

[
ξ∗f (M) · γ +

3

2
(p1 − p2) · γ p · ξ∗f (M)

]
1

|p|2

where the spin-angular momentum functions ȲaM (p) for the positive-energy states can be
written in the matrix form

ȲaM (p) =
1√
8π

1
4Ep(Ep + m)

(m − p2 · γ) ḠaM (1 + γ0) (m + p2 · γ), (18)

where Ep =
√

m2 + p2 and explicit expressions for the matrices ḠaM (p) are given in
Table 1.

Further, we explicitly factor in contributions of the spin-singlet states 1S+
0 and 1P+

1 ,
uncoupled spin-triplet states 3P+

0 and 3P+
1 , and the coupled spin-triplet states 3S+

1 Ä 3D+
1 in

Eq. (17). The result is presented in a lengthy form

χ̄
(t)
Sms

(p; pf , Pf ) =
i

4π3
S++(p0, |p|; s) ×

×
[

δS0 δmS0
1√
4π

Ȳ1S+
0
(p) t∗1S+

0 ,1S+
0
(0, |p̂|; p0, |p|; s) +

+ δS0 δmS0

∑
M

Y1M (θp̂, ϕp̂) Ȳ1P+
1 M (p) t∗1P+

1 ,1P+
1

(0, |p̂|; p0, |p|; s) +

+ δS1 (−)1−mS
1√
3

Y1−mS (θp̂, ϕp̂) Ȳ3P+
0

(p) t∗3P+
0 ,3P+

0
(0, |p̂|; p0, |p|; s) +

+ δS1

∑
Mm

C1M
1m1mS

Y1m(θp̂, ϕp̂) Ȳ3P+
1 M (p) t∗3P+

1 ,3P+
1

(0, |p̂|; p0, |p|; s) +

+ δS1
1√
4π

Ȳ3S+
1 mS

(p) t∗3S+
1 ,3S+

1
(0, |p̂|; p0, |p|; s) +

+ δS1

∑
M

C1M
2M−mS1mS

Y2M−mS (θp̂, ϕp̂) Ȳ3S+
1 M (p) t∗3S+

1 ,3D+
1
(0, |p̂|; p0, |p|; s) +

+ δS1
1√
4π

Ȳ3D+
1 mS

(p) t∗3D+
1 ,3S+

1
(0, p̂; p0, |p|; s) +

+ δS1

∑
M

C1M
2M−mS1mS

Y2M−mS (θp̂, ϕp̂) Ȳ3D+
1 M (p) t∗3D+

1 ,3D+
1
(0, |p̂|; p0, |p|; s)

]
, (19)
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where S−1
++(k0, |k|; s) =

[
(
√

s/2 − Ek + i0)2 − k2
0

]
is the projection of the two-particle prop-

agator onto positive-energy states.
At this stage, the contribution of the FSI to the BS amplitude of the np pair is expressed

in terms of the spin-angular momentum functions and radial parts of the half off-mass-shell
T matrix in SLJ representation. To perform further calculations, we need to solve the BS
equation (9).

3. A SEPARABLE KERNEL OF THE NN INTERACTION

First, we assume that the interaction kernel V conserves parity, total spin S, total angular
momentum J and its projection, and isotopic spin. Because of the tensor nuclear force, the
orbital angular momentum L is not conserved. Moreover, the negative-energy two-nucleon
states are switched off. The partial-wave-decomposed BS equation is therefore decomposed
to the following form:

tLL′(p′0, |p′|; p0, |p|; s) = vLL′(p′0, |p′|; p0, |p|; s)+

+
i

4π3

∑
L′′

+∞∫
−∞

dk0

∞∫
0

k2d|k|vLL′′(p′0, |p′|; k0, |k|; s)S++(k0, |k|; s)tL′′L(k0, |k|; p0, |p|; s),

(20)

where L = L′ = J is for spin-singlet and uncoupled spin-triplet states and L, L′ = J ± 1 is
for coupled spin-triplet states.

Next, we make a rank-one separable ansatz for the NN interaction kernel of the form

vL′L(p′0, |p′|; p0, |p|; s) = λ g(L′)(p′0, |p′|) g(L)(p0, |p|), (21)

where λ is the coupling strength and g(L)(p0, |p|) are the covariant form factors, which depend
only upon the zero components p0, p

′
0 and magnitudes |p′|, |p| of the spatial components of

the relative four-momenta. In Eq. (21) the partial-wave channels for a given J are labeled
only by the angular momenta L, L′.

Thus, the two-fold integrals in Eq. (20) can be solved in a closed form, yielding the ˇnal
expression for the T matrix elements

tL′L(p′0, |p′|, p0, |p|; s) = τ(s) g(L′)(p′0, |p′|)g(L)(p0, |p|), (22)

where function τ(s) has the form

τ(s) =
1

λ−1 + h(s)
, (23)

with

h(s) = − i

4π3

∑
L

+∞∫
−∞

dk0

∞∫
0

k2 d|k| g(L)(k0, |k|)g(L)(k0, |k|)
(
√

s/2 − Ek + i0)2 − k2
0

. (24)
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The nuclear phase shifts δ(s) are related to the fully on-mass-shell T matrix through the
condition of the two-body elastic unitarity. For the spin-singlet and uncoupled spin-triplet
states, the parameterizations of the on-mass-shell T matrix have the form

tL(s) ≡ tLL(0, |p|; 0, |p|; s) = − 16π
√

s
√

s − 4m2
eiδL(s) sin δL(s), (25)

where δL(s) ≡ δL=J(s).
For the coupled spin-triplet states, we use the parameterization

tL′L(s) =
8πi

√
s
√

s − 4m2

(
cos 2εJ e2iδ< − 1 i sin 2εJ ei(δ<+δ>)

i sin 2εJ ei(δ<+δ>) cos 2εJ e2iδ> − 1

)
, (26)

in terms of the phase shifts δ≶ ≡ δL=J∓1 and the mixing parameters εJ(s).
In numerical calculations of the phase shifts, we consider the covariant relativistic gener-

alizations of the Yamaguchi-type form factors

g(L=0)(k0, |k|) =
1

k2
0 − k2 − β2

0 + i0
, (27)

g(L=1)(k0, |k|) =

√
| − k2

0 + k2|
(k2

0 − k2 − β2
1 + i0)2

, (28)

g(L=2)(k0, |k|) =
C(k2

0 − k2)
(k2

0 − k2 − β2
2 + i0)2

. (29)

The nuclear phase shifts δ, mixing parameters ε, as well as the low-energy NN parameters
(the scattering length and the effective range) and the deuteron static properties (the binding
energy, a D-state probability and the quadrupole moment) can be computed in terms of
internal parameters λ, C and β0,1,2 through a specially designed procedure. Technical details
can be found in Ref. [4]. Values of the parameters are given in Table 2.

Table 2. Kernel parameters for partial-wave channels with J � 1

1S+
0

3S+
1 −3D

+
1

3P+
0

1P+
1

3P+
1

λ, GeV2 Ä0.28554 Ä0.50269 Ä0.016123 0.091535 0.084724
β0, GeV 0.221858 0.25124
β1, GeV 0.21861 0.27673 0.28398
β2, GeV 0.29399
C 1.6471

4. CALCULATION OF THE TRANSITION AMPLITUDES

In the framework of the BS formalism, the invariant transition amplitude, given by Eq. (2),
can be written as

Mfi(q, Ki) =
∫

d4p d4k χ̄SmS (p; pf , Pf ) ε(λ)J̃(p, k; Pf , Ki) S2(k, Ki)Γmd
(k, Ki), (30)
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where subscripts f and i imply the polarization quantum numbers of the ˇnal (Sms) and
initial (λ md) states, respectively; the BS amplitude χ̄Sms(p; pf , Pf ) of the np pair is given
by Eq. (17); Γmd

(k, Ki) is the deuteron vertex function, which is the solution of the ho-
mogeneous BS equation with the same interaction kernel V ; J̃(p, k; Pf , Ki) is Mandelstam's
EM vertex operator, describing the interaction of the photon with the hadronic system. The
structure of the EM current operator is speciˇed by the microscopic model such as the impulse
approximation (IA).

The invariant transition amplitude of Eq. (30) can be cast into the form

Mfi = MPWA
fi,IA + MFSI

fi,IA + Mfi,TB, (31)

where MPWA
fi,IA is the transition amplitude in the plane-wave impulse approximation; MFSI

fi,IA

determines contributions of FSI to the impulse approximation, and Mfi,TB accounts for two-
body exchange currents. In the present work we consider only the ˇrst two terms in Eq. (31),
and their explicit expressions are expressed by

MPWA
fi,IA = −ε(λ) Sp

{
χ̄

(0)
SmS

(pf , Pf )
[
Γ(1)(q) + (−1)S+1Γ(2)(q)

]
Λ(L)×

× S

(
L−1

(
1
2
(Ki − q) + pf

))
Γmd

(
L−1

(
pf − 1

2
q

)
; Ki(0)

)
Λ(L)−1

}
, (32)

MFSI
fi,IA = −ε(λ)

∫
d4p Sp

{
χ̄

(t)
SmS

(p; pf , Pf )
[
Γ(1)(q) + (−1)S+1Γ(2)(q)

]
Λ(L)×

× S

(
L−1

(
1
2
(Ki − q) + p

))
Γmd

(
L−1

(
p − 1

2
q

)
; Ki(0)

)
Λ(L)−1

}
, (33)

where Γ(1,2) refers to the γNN vertex operator of particle (1) or (2); the Dirac operator Λ(L)
corresponds to the Lorentz boost transformation Ki(0) = L−1Ki, which places the deuteron

at rest. The np amplitudes χ̄
(0)
SmS

and χ̄
(t)
SmS

and the deuteron vertex function Γmd
are 4 × 4

matrices in spinor space.
Next, the partial-wave decompositions of Eqs. (32) and (33) have to be carried out. Since

in Refs. [1,2] that has been done in great detail for the invariant transition amplitude in PWA,
here we present only the ˇnal result for the invariant transition amplitude with FSI included:

MFSI
fi,IA =

∑
J=0,1

∑
S=0,1

∑
L′′=0,2

∑
LL′ mµ

iL(−1)SCJm+µ
LmSµ YLm(θp̂, 0)×

×
+∞∫

−∞

dp0

+∞∫
0

p2 d|p|
+1∫

−1

d cos θp
t∗LL′(0, |p̂|; p0, |p|; s)

(
√

s/2 − Ep + i0)2 − p2
0

×

×
φL′′

(
L−1(p0 − ω/2),

∣∣L−1(p − q/2)
∣∣)

(Pf/2 − q + p)2 − m2 + i0
Υµ

L′L′′(p̂,p; q), (34)
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where φL′′(p0, |p|) is the radial part of the deuteron vertex function; Υµ
L′L′′(p̂,p; q) are

the matrix elements of the Dirac operators Λ(L) and the γNN vertex Γ(1,2)(q) between
the spin-angular momentum functions ȲL′ and YL′′ . We calculate Υµ

L′L′′(p̂,p; q) using the
algebra manipulation package REDUCE. What then remains to be done is a three-dimensional
integration over p0, |p| and cos θp. The integration over p0 is performed analytically with
the help of Cauchy's theorem, giving special attention to the complicated singularity structure
of the integrand in Eq. (34). The remaining two-dimensional integration is done numerically,
using the programming language FORTRAN.

5. RESULTS AND DISCUSSIONS

We should mention that we can demonstrate the importance of ˇnal-state interaction from
the threshold of deuteron breakup to the laboratory photon energy Eγ

∼= 50 MeV. This is
because the rank-one separable potential does not provide satisfactory ˇts to the NN scattering
experimental data for the spin-triplet 3P+

0,1 channels above Tlab � 100 MeV. Fortunately, it is
sufˇcient to take into account ˇnal states only with J � 1 within this energy range.

In Figs. 1, 2 we show the results of our investigation. The curves labeled by PWA and NR
PWA depict the results of calculations in the plane-wave approximation with one-body current
within the relativistic and nonrelativistic models. Notations FSI and NR FSI correspond to
calculations in impulse approximation with ˇnal-state interaction included within the same
models.

In Fig. 1, the differential cross section dσ/dΩp̂, v.s. Eq. (3), at three different laboratory
energies of 3, 20 and 50 MeV, in units of microbarns, is shown as a function of the c. m.
proton angle. The sensitivity of the angular distributions to the various ˇnal-state interaction
is illustrated by a computation of contributions from separate partial-wave channels of the
ˇnal np system with J � 1. The solid curve in Fig. 1 represents the result of the plane-wave
impulse approximation. Immediately, we can see that the relative value and sign of ˇnal-state
contributions change with increasing photon energy Eγ . The tensor force in the initial bound
and ˇnal-scattering 3S+

1 Ä 3D+
1 states is made Pd = 4%. On the other hand, transitions to the

isovector ˇnal states 1S+
0 and 3P+

1 play a predictably signiˇcant role even at small Eγ , and
their contributions become relatively large as the photon energy increases. The contribution
of the isoscalar spin-singlet ˇnal state 1P+

1 is negligible for the considered range of the
photon energies, because this partial-wave amplitude is proportional to small factor (ωµs/2m)
with µs = −0.12 and relativistic effects are very small. The isoscalar spin-triplet ˇnal state
3S+

1 Ä 3D+
1 becomes pronounced at about Eγ = 50 MeV. It is conˇrmed by numerical results,

obtained in Ref. [5], in the framework of the nonrelativistic theory. Moreover, in view of
the interference between isovector and isoscalar spin-triplet ˇnal states, the contribution from
the transition into 3S+

1 Ä 3D+
1 ˇnal state does not vanish as Eγ increases. On the other hand,

the 1P+
1 contribution is indeed small for photon energies of up to 300 MeV. An interesting

question here is the role played by the relativistic corrections.
Figure 2 helps to gain some insight into the relative importance of the relativistic effects

in the considered ˇnal np scattering states. We make additional calculations of the differential
cross section in the nonrelativistic phenomenological treatment of deuteron photodisintegra-
tion: (1) using the radial wave function of the deuteron for the nonrelativistic Graz-II separable
kernel with the deuteron D-state probability Pd = 4% [6]; and (2) computing the relativistic
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Fig. 1. Contribution of the separate partial-wave channels of the ˇnal np pair into the angular distribution

of c.m. differential cross section at different laboratory photon energies: a) Eγ = 3 MeV; b) Eγ =

20 MeV; c) Eγ = 50 MeV

matrix elements tLL′(0, |p̂|; p′0, |p′|; s) at p′0 = 0. This provides us an opportunity to make
term-by-term comparisons of various ˇnal-state contributions.



28 Bondarenko S. G. et al.

Fig. 2. C.m. differential cross section at different laboratory photon energies: a) Eγ = 3 MeV;

b) Eγ = 20 MeV; c) Eγ = 50 MeV

Our analysis shows that contribution of ˇnal-state interaction is changed by several percent
at Eγ = 5 MeV and up to twenty percent at Eγ = 50 MeV, when computed in the framework
of the relativistic model. We conclude that the relativistic effects stemming from the ˇnal-
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state contributions should be incorporated in the development of a rigorous theory of deuteron
photodisintegration at higher energies. Unfortunately, our results cannot be compared to the
experimental data. The differential cross section is much too low because we neglect the two-
body exchange currents and negative-energy components of the bound-state vertex function
and the scattering T matrix.
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