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A STUDY OF MILLEPEDE ALIGNMENT ALGORITHM
ON MONTE CARLO MODEL OF HERA-B

OUTER TRACKER

I. Belotelov 1, A. Lanyov 2, G. Ososkov 3

Joint Institute of Nuclear Research, Dubna

In this paper a method of internal alignment of HERA-B OTR PC chambers is discussed. The
method is based on simultaneous ˇt of the track and alignment parameters using Millepede matrix
reduction and singular value decomposition. Software which implements this idea has been developed,
the method has been studied on Monte Carlo models with different levels of simulation. A method
generalization for the case of track nonlinear model has been proposed.
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±¨´£μ¢μ° ¸¨¸É¥³Ò Ô±¸¶¥·¨³¥´É  HERA-‚. Œ¥Éμ¤ μ¸´μ¢ ´ ´  μ¤´μ¢·¥³¥´´μ³ μ¶·¥¤¥²¥´¨¨ ¶ -
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³ ²Ó´ÒÌ Ê· ¢´¥´¨° Millepede ¨ ¸¨´£Ê²Ö·´μ£μ · §²μ¦¥´¨Ö. P §· ¡μÉ ´μ ¶·μ£· ³³´μ¥ μ¡¥¸¶¥Î¥-
´¨¥, ¢μ¶²μÐ ÕÐ¥¥ ÔÉ¨ ¨¤¥¨, ³¥Éμ¤ ¶·μÉ¥¸É¨·μ¢ ´ ´  ³μ¤¥²ÖÌ Œμ´É¥-Š ·²μ · §²¨Î´μ£μ Ê·μ¢´Ö
¸²μ¦´μ¸É¨ ¨ ·¥ ²¨¸É¨Î´μ¸É¨. �·¥¤²μ¦¥´μ μ¡μ¡Ð¥´¨¥ ³¥Éμ¤  ´  ¸²ÊÎ ° ´¥²¨´¥°´μ° ³μ¤¥²¨
É·¥± .

INTRODUCTION

HERA-B is the ˇxed target experiment at the 920 GeV proton storage ring of HERA
at DESY [1]. The tracking system of HERA-B consists of a vertex detector system (VDS)
and a main tracker system. The latter is separated into an inner tracker (ITR) close to the
proton beam pipe and outer tracker (OTR) farther out. The HERA-B Outer Tracker uses
honeycomb drift chambers [2]. Pattern recognition Chambers (PC) of OTR are made of 998
separate sensitive planes. These planes are grouped in 24 stereolayers, the layers are grouped
in four superlayers. Some layers are rotated by ± 80 mrad. The superlayers are divided into
two parts: (+X) and (−X) halves wrapping proton beam pipe. Since OTR PC geometry
is rather complicated and track multiplicity is high, in order to provide accurate results all
the internal parameter correlations should be taken into account, external degrees of freedom
should be known and properly ˇxed. Several techniques have been used to fulˇll these requi-
rements.
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1. DATA-DRIVEN ALIGNMENT

1.1. Internal Alignment as Functional Minimization Problem. Any tracking system
can be considered as an assembly of many separate modules, the positions of which can be
displaced during assembling and the detector maintenance despite of any preventive means.
Therefore, an alignment procedure is needed to detect possible distortions. We follow here a
concept of a data-driven alignment, i.e., the use of data sets of real measurements produced by
the tracking system. Misalignment of detector modules can be found by analyzing residuals
between the measured values and ˇtted track coordinate. These residuals are functionally
dependent on the two types of parameters: track model parameters and alignment parameters.
Therefore, the alignment problem can be formulated as a mathematical problem of minimizing
a functional summing the squares of all residuals by both types of parameters:

χ2 =
∑

events

∑
tracks

∑
hits

Δ2
i /σ2

i , (1)

where Δi is hit residual Å the difference between the measured and ˇtted track position:

Δi = xfit − xmeas (2)

and σi is accuracy of hit coordinate measurement. Fitted track position xfit is deˇned by
so-called track model:

xfit =
n∑

i=1

ai · di +
ν∑

j=1

αj · δj . (3)

The simplest track model in misaligned detector is linear and includes the estimated track and
alignment parameters ({ai} and {αi}) and their derivatives ({di} and {δi}). Solution (the set
of parameters values, minimizing the functional) is obtained from a set of linear equations
(so-called normal equations of least squares):

Ca = b, (4)

where C is matrix of derivatives with dimension equal to the number of estimated parameters.
The solution can be found as

a = C−1b. (5)

Here some difˇculties appear: extreme parameter multiplicity and unconstrained external
degrees of freedom. The number of tracks necessary to use to get reasonable alignment
precision is in the order of 104−106, and the number of alignment parameters for modern
detectors is in the order of 103. Therefore, the matrix of normal equation is not invertible
using the common techniques. Internal alignment, based on residual functional minimization,
is blind to the effects of geometrical transformations which project tracks into themselves.
This leads to singular normal equation matrix. Singular matrix does not has an inverse.

1.2. Minimization of Alignment Functional. In order to eliminate the above-mentioned
difˇculties, one could either simplify the initial task or explore its special properties and apply
special numerical algorithms.
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Iterating Biased Fit. To deal with extremal parameter multiplicity, some alignment pro-
cedures attempt to ˇnd the alignment parameters by performing a series of track ˇts which
initially ignore the misalignments [3, 4]. From the distribution of residuals the alignment
parameters are then deduced. But the ˇtted track parameters are a function of misalignment,
and dividing initial functional Eq. (1) in sets of separate track parameters ˇts and alignment
parameters ˇt ignores all correlations between the track and alignment parameters existing
in the initial functional. This approach under some circumstances allows one to reduce the
remaining residuals, but it does not allow one to control external degrees of freedom without
applying any special requirements.

Fig. 1. Fixing selected planes/layers of planes

For simple telescopic detector geometries we can choose two ˇxed planes (or four planes
for three-dimensional tracks) and align other detector elements in respect to these selected
planes. This is achieved by using tracks passing these two ˇxed planes and also all other
planes being aligned. For large complex setups detector layer consists of several planes;
therefore, all the planes in the layer have to be ˇxed. But the planes in a layer themselves
are unaligned in respect to each other.

Using External Tracks. Another way to reduce the dimension of the problem is using
tracks extrapolated from other detectors if it is possible. In this case misalignment in the
examined part of the tracking system does not affect the track parameters anymore. It allows
one to align the given subdetector in respect to the other parts of the system. But because of
long extrapolation length, reference detector misalignment, multiple scattering, etc., precision
of the extrapolated track parameters is much worse than that for the tracks reconstructed in
the given subdetector. This method provides the ability to avoid displacement of the whole
detector with high precision, but accuracy for determining individual modules' position is less
than desirable.

Exploring Special Matrix Structure. In contrast to these two methods, an approach sug-
gested by V.Blobel [5] makes one ˇt to all track and alignment parameters simultaneously
using one huge error matrix which precisely describes the relationship between track (local)
parameters αi and alignment (global) parameters ai. This method gets around the problem's
dimension using matrix inversion by partitioning technique. It splits the large inversion into
set of smaller inversions. The next section gives a detailed description of this idea.

1.3. Idea of Millepede Alignment Algorithm. Matrix of normal equation C is very
sparse and has regular block structure, with many vanishing submatrices. It has three types
of contributions from every particular measurement. The ˇrst part is a contribution of a
symmetric matrix Cl of dimension n (number of global parameters):

Cij =
∑

k

wkdikdjk. (6)
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The second part is symmetric matrix Γi deˇned as

Γij =
∑

k

wkδikδjk, (7)

which gives the contribution to the big matrix on the diagonal and depends only on the ith
partial track. The third contribution is a rectangular matrix Gi which contains the correlation
between the global and local parameters:

Gij =
∑

k

wkdikδjk. (8)

There are two contributions to the vector of normal equation, bi for the global and βj for
the local parameters:

βj =
∑

k

wkxkδjk, bj =
∑

k

wkxkdjk. (9)

In terms of these submatrices the whole matrix of normal equation looks like

⎛
⎜⎜⎜⎜⎝

∑
Cl . . . Gl . . .
...

. . . 0 0
GT

l 0 Γl 0
... 0 0

. . .

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

a
...

αl

...

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

∑
bl

...
βl

...

⎞
⎟⎟⎟⎟⎠ . (10)

One can solve the local equation Γα = β for each track α = Γ−1β. Using matrix
inversion by partitioning, the huge matrix could be reduced to n normal equations for global
parameters

C′a = b′ (11)

with modiˇed matrices C′ and b′,

C′ =
∑

i

Ci −
∑

i

GiΓ−1
i GT

i , b′ =
∑

i

bi −
∑

i

Gi(Γ−1
i βT

i ). (12)

All information about detector geometry, tracks, all parameters correlation which were
encoded in the initial huge matrix C now is kept in reduced C′. The direct solution a = C′−1b′

represents solution vector a with covariance matrix C′−1.
The program Millepede written in Fortran by V.Blobel implements this technique in code.
1.4. External Degrees of Freedom. For tracks parameterized by a straight line, from the

point of view of χ2 value the track model is invariant to any linear coordinate transformation.
In three-dimensional space these transformations can be described by 12 parameters:

• axis scalings Fx, Fy, Fz ;
• translations Dx, Dy, Dz;
• rotations Rx, Ry, Rz;
• shearings Sxz, Syz, Sxy.
For detectors used in modern high energy physics not all of these degrees of freedom are

valid. Let us assume the simplest detector having some sensitive planes with strips or wires
along Y axis, which measure only one x coordinate transverse to Z axis. Let us assume the
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detector planes to be rigid bodies, where the strip or wire pitch within the modules cannot be
changed, thus scalings in x and y are forbidden. The remaining external degrees of freedom
depend on the track model. Let us analyze some of them which we will use in further study.

First, let us suppose that only possible misalignment is parallel to the measured coordinate
x. For such a detector and track model an overall detector shift Dx and shearing Sxz are not
ˇxed.

The other interesting case is the track model including shifts in X and Z and rotations
around Z. This is a more or less realistic scenario for our detectors, since such a detector is
not sensitive to shifts in Y and the effect of rotations around X and Y is much smaller than
that around Z axis. For such a track model we should ˇx ˇve external degrees of freedom:
overall detector shifts Dx and Dz, shearing Sxz, scaling in Z and overall rotation around Z.

If we are measuring both x and y coordinates (i.e., our planes are rotated relative to each
other), then we also should ˇx overall shift Dy and shearing Syz.

Fig. 2. Examples of misaligned geometry

Plots in Fig. 2 illustrate the meaning of these unconstrained degrees of freedom. Figure 2, a
shows initial state of misaligned detector; Fig. 2, b is one of the possible solutions of internal
alignment. But the situation represented in Figs. 2, cÄe also corresponds to the minimum of
alignment functional. We have an inˇnite number of possible solutions and we need to be
able to choose the desired one. It could be done in several ways [6].

Let us assume that we know the position of some modules in our detector, e.g., from
survey measurements. Then we prefer to ˇx these modules and keep them at the same known
position.

In case the number of these modules is exactly equal to the number of unconstrained
degrees of freedom, in order to constraint our problem we need to add such a term to out
initial residual functional (i corresponds to the number of ˇxed modules):

ai = 0. (13)

In Blobel's notation it corresponds to keeping measurements in ˇxed planes during local
ˇts, but excluding corresponding alignment parameters ai from global ˇt. It allows us to
choose exactly one solution, which puts our functional to its minimum and globally aligns
the detector in respect to those ˇxed planes.
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If the number of planes with more or less known positions is greater than the number of
external degrees of freedom, simple ˇxing of all these planes produces overconstraining. It
is better to allow these planes with parameters ai some movements inside some ranges Δi,
minimizing this functional:

χ2
extra =

∑
i

a2
i /Δ2

i . (14)

In matrix form it corresponds to adding the term 1/σ2
i to the diagonal elements of the

matrix of normal equation, corresponding to the ith plane.
Sometimes it is not possible to determine the position of any particular plane in global

frame, but it is known that average overall misalignment is equal to zero. Usually it is done
by a global alignment procedure. And the only question is how to keep the system globally
ˇxed during the detector internal alignment.

We can achieve it by applying some limitation on all ˇtted alignment parameters:

∑
i

wi · ai = 0. (15)

Choosing proper weights, we could ˇx overall shifts, shearings, rotations and axis rescal-
ings. Taking these extra conditions into account can be done using Lagrange multipliers; in
matrix form it corresponds to adding extra lines (rows and columns) holding weights wi to
matrix of normal equation C or to reduced matrix C′.

1.5. Singular Value Decomposition. Matrix C of normal equation for internal alignment
is singular. It has rank defect. There exists a very powerful set of techniques, known as
singular value decomposition for dealing with sets of equations or matrices that are either
singular or else numerically very close to singular [7, 8]. In our case standard technique,
which is Gaussian elimination, fails, but SVD could diagnose precisely what the problem is.
It also could be used not only to diagnose the problem, but also to solve it. SVD is deˇned
by the following theorem of linear algebra:

If A is real m-by-n matrix, then there exist orthogonal matrices

U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n (16)

such that

UT AV = diag (σ1, . . . , σp) ∈ Rm×n, p = min {m, n}, (17)

where

σ1 � σ2 � . . . � σp � 0, (18)

σi are the singular values, columns of U and rows of V are the singular vectors. If r is
deˇned by

σ1 � . . . � σr � σr+1 = . . . = σp = 0, (19)

then rank (A) = r. Now we have SVD expansion for matrix A:

A =
r∑

i=1

σiuiv
T
i . (20)
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Condition number κ is deˇned by

κ(A) =
σmax(A)
σmin(A)

. (21)

Lower κ here means better conditioned problem. For singular matrix the condition
number κ is inˇnite and for ill-conditioned matrices it is too large (approaches the machine's
�oating-point precision).

From (17) and (20) it follows immediately that the inverse of matrix A is

A−1 = V

[
diag

(
1
σi

)]
UT . (22)

Let us consider the set of simultaneous equations

A · x = b. (23)

Here A works as a linear mapping from vector space x to vector space b. If A is singular,
then there is some subspace of x, called the nullspace, that is mapped to zero: A · x = 0.
There is also some subspace of x that can be mapped to b. This subspace of b is range of A.
The dimension of the range is rank of A.

SVD explicitly constructs orthonormal bases for the nullspace and range of a matrix. The
columns of U whose same-numbered elements σj are nonzero are an orthonormal set of basis
vectors that span the range; the columns of V whose same-numbered elements σj are zero
are an orthonormal basis for the nullspace. If vector b lies in the range of A, singular set of
equations has more than one solution, since any vector in the nullspace can be added to x in
any linear combination. If we want to get one particular solution, we can replace 1/σi = 0
when σi = 0, then compute:

x = V

[
diag

(
1
σi

)] (
UT · b

)
. (24)

This will be the solution vector with the smallest length |x|2.

2. EXPLORING EXTERNAL DEGREES OF FREEDOM FOR SIMPLE
MONTE CARLO DETECTOR MODEL USING SVD

A simple detector model with 12 planes simulated by Monte Carlo methods was used.
Straight line tracks pass through all the planes. Each plane measures one coordinate x,
transverse to the axis of the detector. Each plane may be shifted in the direction of measured
coordinate.

A Millepede-like code rewritten in C++ was used to solve the alignment problem. Matrix
C was extracted and passed to singular value decomposition routine, provided by LAPACK
library [9].

The shape of singular value spectrum shown in Fig. 3 has two zero singular values. One
can deduce that for this problem two degrees of freedom are not constrained. Two singular
vectors corresponding to these singular values construct the basis for all transformations of
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Fig. 3. Shape of singular value spectrum (a) and two singular vectors, corresponding to zero singular
values (b, c) for unconstrained alignment problem

our alignment parameters which keep hit residuals the same. The shape of these vectors is
deˇned by unconstrained degrees of freedom.

In this case one can show that these transformations are overall shift and shearing. To
ˇx the overall shift, one can apply the following requirements on estimated alignment correc-
tions ai: ∑

ai = 0. (25)

Now the ®center of gravity¯ of our model detector is ˇxed, but still some external degrees
of freedom are not yet under control, namely each plane can be shifted by a value proportional
to its distance from the center of gravity along Z axis, and these movements are not forbidden
neither by initial residual functional Eq. (1) nor by Eq. (25). To ˇx these transformations, one
can apply constraint with weights, also proportional to Z position of the corresponding plane:

∑
Δziai = 0. (26)

Applying linear constraints in form of Lagrange multipliers Eq. (15), these external para-
meters can be ˇxed.

The situation after constraining is shown in Fig. 4: all the singular values are nonzero Å
the spectrum is �at.

Fig. 4. Shape of singular value spectrum (a) and two singular vectors, corresponding to zero singular

values (b, c) after linear constraints are applied

The two singular vectors shown in Fig. 4 still construct a basis for overall shift and
shearing, but these transformations are not unconstrained Å the corresponding singular values
are nonzero. If external degrees of freedom are not properly ˇxed, the detector could get
signiˇcant overall displacement.
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Fig. 5. Simple Monte Carlo test of constraining: a, b) initial misalignment; c, d) after alignment with
constraints; e, f) after unconstrained alignment

Figures 5, a, b show the initial misaligned detector. Figures 5, c, d show this detector
after the alignment with properly constrained matrix C. In case the matrix C remains
unconstrained, the solution could be biased, as is shown in Figs. 5, e, f.

3. STUDY OF OTR ALIGNMENT IN MONTE CARLO

3.1. Monte Carlo Model of HERA-B OTR. The outer part of HERA-B main tracker
(OTR) is designed to detect charged particle tracks with distance from proton beam
r � 20 cm [2].

The layout of OTR superlayers used for 2002Ä2003 data taking is shown in Fig. 6 (without
the magnet superlayer). The proton beam comes from the upper right corner of this picture.

The pattern recognition chambers of the outer tracker (PC01ÄPC04) are installed in the
ˇeld-free region between the magnet and the RICH. It is about 1.5 m long, the size of
superlayers is about 3 × 4 m. PC chambers play the key role in track reconstruction chain
and particle momentum estimation, that is why it is necessary to align this subsystem.
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Fig. 6. GEANT model of OTR geometry

HERA-B OTR PC has 998 separate sensitive planes Å GEDEs. Some GEDEs are
combined in modules. The OTR layers are built from honeycomb drift cells. In the outer part
the size of a drift tube cell is 10 mm, while in the inner part, where occupancy is higher, the
size of a cell is 5 mm. The distances between wires in a monolayer (the so-called ®pitches¯)
are 17.3 and 8.7 mm, for 10- and 5-mm cells, respectively. In our study each separate GEDE
can be considered as a rigid body and be shifted in two directions along X and Z axes
(coordinate y along the wire is not measured in the drift tubes) and rotated around three axes
X , Y , Z. Therefore, the most general problem has ≈ 5000 alignment parameters.

The effects of magnetic ˇeld in the PC region are small enough to be not considered.
Applying momentum cut during track selection, we could also neglect the multiple scattering
in PC.

The interaction of particles passing through the detector is simulated using GEANT 3.21.
Simulation includes all known effects, such as bremsstrahlung, Coulomb scattering, etc.
Particles hitting the detector produce Monte-Carlo Impact Points (MIMP).

The next step is simulation of detector response. There exist several modes of digitization
in OTR. The simplest digitization includes MIMP smearing with some predeˇned width, while
the most advanced version implements simulation for all processes in drift cell, such as noise
and inefˇciency, cross-talk. The output of digitization is stored in HITB table in the same
form as real data after hit preparation. Detector response and reconstruction are done within
ARTE package.
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3.2. Misalignment Simulation. To simulate misaligned detector within ARTE environ-
ment, the following procedure is used:

• MIMP data are acquired using HBGEAN assuming nominal geometry without any
misalignment applied;

• misalignment is introduced in detector model before the digitization step Å shifting
the local coordinate plane of every GEDE, we will get all digitized information also shifted;
digitized hit information is stored in HITB;

• track building should be done assuming nominal geometry, before reconstruction geom-
etry is restored to normal, but HITB remains shifted;

• hit to track association was done using Monte Carlo truth Å we just follow the MC
track looking for digitized hits, close to it.

In order to test model, algorithm and software, we assume misalignment only in the
direction transverse to the detector axis and GEDE wires. We could use the following
straight-line track model in misaligned detector:

uj
i = aipj = xj

0 cosαi + tjxz cosαi + yj
0 sinαi + tjyz sinαi + Δui, (27)

where ai = {x0, tx, y0, ty, Δui} is the row of track and alignment parameters and p =
{cosα, z cosα, sin α, z sin α, 1}T is the column of parameters derivatives; x0, tx, y0, ty are
the track shifts and slopes in XY and Y Z planes; Δui is the misalignment transverse to
the detector axis and wires; αi is the stereo angle on the ith plane. This assumption allows
us to keep the problem linear. In order to reach reasonable alignment precision, we have to
use ≈ 105 tracks, so the number of track parameters ≈ 105−106. After applying Blobel's
reduction we have linear least squares problem for alignment parameters only.

Fig. 7. So-called ®�oor plan¯ of the normal equation matrix of OTR alignment problem after dimension

reduction
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The matrix shown in Fig. 7 is obtained assuming only Δu shifts are included, in this case
the matrix dimension is equal to the number of aligned units. HERA-B OTR consists of two
halves, divided approximately by plane x = 20 cm. The majority of tracks pass through one
or the other half, and only a small number of tracks go through both halves. The �oor plan
shows that the correlation between the parameters coming from the same half is strong, while
the correlation between different halves is weak. If this second correlation would be exactly
zero, it means that the two halves of OTR are completely independent and not connected by
tracks to each other. In this case we need to constrain external degrees of freedom for both
parts separately. If this connection exists, even if small, we need to estimate if it is strong
enough to glue the halves together.

Analyzing nonzero elements of the cross-halves part of C′, we can conclude that the
connection between the halves is realized mostly via the overlapped regions of the rotated
layer and not only via low-momentum tracks. That means that even after momentum cut
(needed for good track selection) we have OTR halves connected by tracks passing through
both halves.

3.3. SVD Analysis. In order to estimate the number of external degrees of freedom, one
could apply singular value decomposition to the reduced matrix of normal equation C′.

Fig. 8. Singular value spectra for unconstrained problem (a, b) and the problem constrained by Lagrange

multipliers (c, d)

Figures 8, a, b show singular value spectrum for the initial unconstrained matrix C′. It is
a decreasing sequence with a sharp drop on its tail. This drop represents singularity of C′, or
in other words the presence of unconstrained degrees of freedom. The number of values in
the spectrum after the drop, or the number of singular values equal to zero within computer
precision yields the number of unconstrained degrees of freedom. In our case Nunconstr = 4.
From the study with simple geometry, one can conclude that the unconstrained degrees of
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freedom are two shifts (translations in x0 and y0) and two shearings (translations in tx and
ty). SVD shows that from the point of view of external degrees of freedom the OTR is a
rigid body but not the two separate halves, otherwise Nunconstr would be 8 (4 for every part).

To ˇx these degrees of freedom for HERA-B OTR case, there are two solutions: ˇx
some alignment parameters Eq. (13) or apply some constraint to the whole set of alignment
parameters Eq. (15). In order to apply the ˇrst solution, one should ˇx the position of four
planes Å two pairs of GEDE with nonzero relative stereo angle (the so-called ®crosses¯).
Longer distance between crosses gives better ˇxing. The condition number κ of C′ matrix is
the estimation of ˇxing efˇciency: a lower κ means a better conditioned problem (Fig. 9).

Fig. 9. Condition number κ decreasing with increasing distance between ˇxed ®crosses¯

To ˇx external degrees of freedom constraining the whole set of parameters Eq. (15), one
needs to properly choose values for wi. Our case study with simpliˇed geometry shows
that to ˇx overall shift, wi should be constant (see Eq. (25)), and to ˇx shearing, wi should
be proportional to Δz (see Eq. (26)). Taking planes rotation into account, the view of four
weight vectors used to ˇx four degrees of freedom for HERA-B OTR looks like

w1
i = cosαi Åshifts (x0),

w2
i = cosαizi Åshearings (tx),

w3
i = sinαi Åshifts (y0),

w4
i = sinαizi Åshearings (ty).

(28)

3.4. Test of Constraining. To check different ways of ˇxing external degrees of freedom,
we introduced some random shifts (normal distributed with width 300 μm) in PC, with some
number of tracks passing through it, then track information was used by alignment procedure.

If no constraints are used the matrix C′ is singular and solution could not be obtained
using normal Gauss elimination technique. But the Millepede algorithm uses some custom
modiˇcation of this technique, it allows one to get solutions even if the matrix is singular [5].
As shown in Figs. 10, c, d, alignment in layers could be achieved, but since some parameters
are not ˇxed, its values are unpredictable and the solution is unusable.

Figures 10, e, f represent the situation when the linear constraints deˇned by Eq. (15) with
weights calculated according to Eq. (28) are applied. These ˇgures show that misalignment
is reduced and the external degrees of freedom are ˇxed. The same is for the case when
the alignment problem is constrained by ˇxing two ®crosses¯ (Figs. 10, g, h). The remaining
misalignment here is deˇned by the number of tracks used in alignment procedure. A detailed
study of this dependence is presented in the next subsection.
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Fig. 10. Remaining misalignment distributions for different ways of constraining C′

3.5. Alignment Quality vs. Number of Tracks Used. The precision of determination
of alignment parameters with Monte Carlo tests depends on some factors, including initial
misalignment, accuracy of single hit measurement, number of tracks used and also correct-
ness of algorithm implementation. Taking into account the computational complexity of the
algorithm, some additional questions arise, for example, accumulating of round-off errors.

Absolute Remaining Misalignment. To check the algorithm, we run it over some data
samples with different number of tracks and different introduced misalignments. The ˇrst
value we watched to estimate the alignment quality on Monte Carlo was the width of the
remaining misalignment distribution, and we also checked how it depends on the introduced
misalignment and the number of tracks used (Fig. 11).
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Fig. 11. Remaining misalignment vs. the number of tracks used (initial misalignment is 500 μm):
a, b) initial misalignment; c, d) remaining misalignment after 10000 tracks are used; e, f) remaining

misalignment after 250000 tracks are used

Figure 12, a shows the dependence of the remaining misalignment on the number of
tracks used, and we can conclude that it follows the expected 1/

√
Ntrack law. It also helps

to estimate the number of tracks we should use ≈ 105.

Normalized Residuals. One of the advantages of using linear least squares minimization
is the ability to get error estimations using error propagation technique. In our case the error
estimations for alignment parameters are presented by the diagonal elements of C′−1.

Studying this alignment method with Monte Carlo model, it is worth checking the agree-
ment between the error estimations σai predicted by error propagation and real residuals
between the introduced misalignment a0

i and the estimated alignment parameters ai.
It could be done analyzing the distribution of the so-called normalized residuals:

rn =
a0

i − ai

σai

.
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We check the width of normalized residual distributions for some samples with different
initial misalignment and number of tracks.

Fig. 12. a) Normalized residuals, initial misalignment 300 μm, 250000 tracks are used for alignment;
b, c) remaining misalignment and width of normalized residuals vs. the number of tracks used for

different initial misalignments

There are several physics effects (multiple scattering, remaining magnetic ˇeld, etc.)
which exist but are not taken into account in our model. There are also some computational
difˇculties we face (extremely large number of parameters, matrix singularity, round-off error
accumulations). Figure 12, b shows that the widths of these distributions are always close to
1, it is what one would expect if the problem is still linear, the algorithm is implemented
correctly and it allows one to deal with the problem of such a dimension (106 parameters).

4. ALGORITHM GENERALIZATION FOR THE CASE
OF NONLINEAR TRACK MODEL

The alignment parameters discussed above Å shifts perpendicular to the detector axis and
wires, are the good benchmarks to test the algorithm with Monte Carlo, since the track model
remains linear after introducing alignment parameters:

uj
i = aipj = xj

0 cosαi + tjxz cosαi + yj
0 sinαi + tjyz sinαi + Δui. (29)

But after applying Δu, Δα and Δz misalignments together:

u = x0 cos (α + Δα) + tx(z + Δz) cos (α + Δα)+
+ y0 sin (α + Δα) + ty(z + Δz) sin (α + Δα) + Δu =

= x0(cos α − sin αΔα) + tx(z + Δz)(cosα − sinαΔα)+
+ y0(sin α + cosαΔα) + ty(z + Δz)(sinα + cosαΔα) + Δu, (30)

the problem becomes nonlinear Å the track model includes terms where the alignment
parameters are multiplied by other alignment parameters and track parameters. Expanding this
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equation to Taylor series and leaving only linear terms in misalignment corrections, we get

u = xj
0 cosαi + tjxz cosαi + yj

0 sin αi + tjyz sin αi + Δui+

+ (−x0 sin α − txz sin α + y0 cosα + tyz cosα)Δα + (tx cosα + ty sin α)Δz. (31)

The problem is still nonlinear Å derivatives
δu

δα
and

δu

δz
depend on local track parameters.

To manage it we use two iterations. First we suppose that misalignment corrections are ˇxed
and ˇt only local parameters {x0, tx, y0, ty} for each track. Then the ˇtted local parameters
are used as ˇxed values in these derivatives.

The more alignment corrections are accounted in the track model, the more detector
geometry transformations are possible. For this set of alignment parameters, seven degrees
of freedom are not constrained: overall detector shifts Dx, Dy and Dz, shearings Sxz and
Syz, scaling in Z and overall rotation around Z. Here, as in the simplest linear case, two
strategies of constraining these transformations are applicable: ˇxing some planes or applying
Lagrange multipliers.

For the ˇrst case it is enough to ˇx two pairs of detector planes with different stereo
angles (®crosses¯), as was described before.

To constrain external transformations by Lagrange multipliers, one should use the weights
calculated according to Eq. (28) and some additional weight vectors to ˇx new external degrees
of freedom:

w5
i = 1 Å overall shift in z,

w6
i = zi Å scaling in z,

w7
i = 1 Å overall rotation around z.

(32)

The ˇrst four constraints should be applied to Δx misalignment parameters set; the ˇfth and
sixth, to Δz; and the last weight vector, to rotational misalignment parameters Δα.

CONCLUSION

The method of alignment parameters estimation, based on simultaneous ˇt of track and
alignment parameters, has been applied to HERA-B OTR PC Monte Carlo model.

At ˇrst, the mathematical idea and developed software have been tested on a simple
detector model, a special study using singular value decomposition has been done to explore
external degrees of freedom and the ways of ˇxing them.

Then the same combination of techniques has been applied to the complex GEANT model
of HERA-B OTR PC including the full geometry description, detector response, channel and
chamber inefˇciencies. The initial functional minimization problem with ≈ 106 parameters
was reduced to an affordable size ≈ 103 parameters using Blobel's approach. The number of
external degrees of freedom has been estimated using singular value decomposition. Several
methods of constraining these degrees of freedom have been tested.

The full set of desired alignment parameters makes the functional a nonlinear one. Lin-
earization of the problem was proposed.

The method appears to be suitable to solve the problem with ≈ 106 track parameters and
≈ 103 alignment parameters.
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