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GROUND STATE CORRELATIONS AND STRUCTURE
OF ODD SPHERICAL NUCLEI

S. Mishev', V. V. Voronov?

Joint Institute for Nuclear Research, Dubna

It is well known that the Pauli principle plays a substantial role at low energies because the phonon
operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle
and phonon operators one can take into account the Pauli principle corrections. Besides, the ground
state correlations due to the quasiparticle interaction in the ground state influence the single-particle
fragmentation as well. In this paper, we generalize the basic equations of the quasiparticle—phonon
nuclear model to account for both effects mentioned. As an illustration of our approach, calculations
on the structure of the low-lying states in *>3Ba have been performed.

X0po1110 U3BECTHO, UTO NMPUHLMII IT yau OK 3bIB €T CyIIECTBEHHOE BIMSHUE H CTPYKTYPY COCTOSIHUI
NP HU3KUX DHEPIULdX, T K K K OIIEP TOPLI (l)OHOHOB HE ABJIAIOTCA UAC JIBHBIMU 6030HHI)IMI/I OoIep To-
P MH. BpIUMCIUB TOUHBIE KOMMYT TOPBI MEXIYy KB 3M4Y CTHYHBIMH U (DOHOHHBIMU OIEp TOP MH, MOXHO
Y4E€CTh NONp BKU H3-3 TNPUHIMUIL I1 yiu. KpOMC TOro, H Cbp TMEHT OUI0 OJHOY CTUYHBIX COCTOSHUM
BIIUAIOT Koppenﬂupm B OCHOBHOM COCTOAHHH, BO3HHUK IOIIIUE H3-3 B3 HMOHeﬁCTBHﬂ KB 3U4Y CTHL. B
I HHOW p 60Te OCHOBHbBIE Yp BHEHHS KB 34 CTHYHO-(OHOHHON Mojenn OOOOIIeHBI H CIIyd W yder
06&1;1)& YIOMSHYTHIX 3(phpeKTOB. B K yecTBe mpuMep p CCUUT H CTPYKTYp HH3KOJEX LIMX COCTOSHHMA
B “’Ba.

PACS: 21.60.-n

INTRODUCTION

In the forthcoming period there will be an increasing activity in the domain of unstable
nuclei studies due to the start of operation of several major facilities, producing intensive
beams of radioactive nuclei, far away from the valley of stability. These studies are motivated
by the significant changes that take place in the structure of these nuclei. Along with the
changes in the shell structure within the mean field approximation, the many-body effects
increase their role as we move away from the magic numbers. In particular, the interaction
between the single-particle states with energies near the Fermi level with the vibrating core
must be treated within an enlarged configuration space, which takes account of the correlations
in the ground state. Here and further, by ground state correlations (GSC) we imply correlations
due to the quasiparticle-phonon interaction in the ground state.
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A fairly good theoretical description of the ground state correlations (GSC) can be archived
within an extended version of the quasiparticle—phonon nuclear model (QPM) [1]. The QPM
is widely used for the description of the energies and fragmentation of nuclear excitations. The
different versions of the QPM equations for odd—even spherical nuclei are given in [2—4].
It has been shown in [2,5] that corrections due to the action of the Pauli principle are
very important for the determination of the energies of some states. However, in these
investigations the ground state correlations effects have not been taken into account. Later,
in the study of Van der Sluys et al. [6], it was proved that the GSC influence the single-
particle fragmentation as they shift the strength to higher excitation energies. In their study,
the operators of quasiparticles and phonons have been taken as the commuting ones, thus
neglecting the Pauli principle.

In this paper, we generalize the basic QPM equations for odd—even spherical nuclei to
take account of the effects due to the GSC and the Pauli principle. We treat long-range
ground state correlations by including backward-going quasiparticle-phonon vertices using
the equation of motion method [7] with explicitly taking into account the Pauli principle.
Numerical calculations of the structure of the low-lying states in 33Ba within the developed
approach have been performed.

1. FORMULATION OF THE MODEL

We employ the QPM-Hamiltonian including an average nuclear field, described by the
Woods—Saxon potential, pairing interactions, isoscalar particle-hole residual forces in sepa-
rable form with the Bohr—Mottelson radial dependence [8]:

(n,p)

H=3 1> (B = A)aj, ajm G(O) (PJPo)" "‘Z”” M, My,):p . (1)
T jm

The single-particle states are specified by the quantum numbers (jm); E; are the single-
particle energies; A is the chemical potential; G(TO) and k() are the strengths in the p-p and
p-h channels, respectively. The sum goes over protons (p) and neutrons (n) independently
and the notation 7 = {n,p} is used. The pair creation and the multipole operators entering
the normal products in (1) are defined as follows:

+

()
MA/L \/W Z f Jm]m |>‘/J’> ]m jm7

where f](?,) are the single-particle radial matrix elements of the residual forces.
In what follows, we work in quasiparticle representation, defined by the canonical Bogo-
liubov transformation:

at = ujat 4+ (=17 " v,
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The Hamiltonian can be represented in terms of bifermion quasiparticle operators (and
their conjugate ones):

B(jj' s am) = Y (=17 Gmg'm | Awadh, a0,

’
mm

ATG s a) = D (my'm’ | Awaf,alh

’
mm

The phonon creation operators are defined in the two-quasiparticle space in a standard
fashion:

Qi = Z{W‘/ AT(s ) = (=M1 AGiG A = )},

where index A = 0,1, 2, 3, ... denotes multipolarity and p is its z-projection in the laboratory
system. The normalization of the one-phonon states reads

<‘ [Q}\/Li7 Q:\F/p/i/} |> = 6)\)\'6/L/L'6ii' .

In terms of quasiparticles and phonons, the Hamiltonian is rewritten

H = ho + hpp + hQQ + hQBa ho + hpp = Z €j ajmajm7

jm

hQQ = —% Z A()\’L’L/) (Q;\rl“ + (_)A7M Q/\fp,i)( +7 .+ (_)A+M Q)\/Li/)v

A—pi
Apii’
hop = =55 D EPUIA) ((5)' Qs + Qampr) BUS A= ) + hic
/\uw
where / ) o
X\ X\ TR
Ay = 227 pijia = D0 i fﬂ% ,
Va2 2 T YN
, (fPulty2e, _ (FPuN2e o wy
XN _ Jj__ 39 J i _ Jj__ 39 I3
XM= e Y =) o
ji i’ M ji (52,,/ - wiz)
i
with v§;,) = ujujy — v;v; and uﬁ,) = u;rv; + ujv;. Here and further, we use the notation

7Tj = (2] + 1).
The model wave function of an odd—even spherical nucleus is taken in the form [6]:

U, (JM) = 0%y, D), 2)
where

Oty =Coaty, + Z DY (Jv)PA,(JM) = Egyéiyn — Y F)(Jv)Pini(JM),  (3)
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with

P]—t\z(JM) = {aij;Li} J]M7
and stands for time conjugate according to the convention: Pjy;(JM) = (—1)/—M
Pji(J — M).

We apply the equation of motion method to the excitation operator (3):

({0010, H, Oz, }) = 030 ({60501, 0311 })-

Following the linearization procedure [7], at the final state of calculation of the matrix
elements, we consider the ground state of the even—even nucleus to be a vacuum state for
both operators o jar and Q.

In all calculations the exact commutation relations between the quasiparticle and phonon
operators are considered:

|:O‘jm7 Q:\‘FMZ:| = Z <jmj/m/ | )‘:u> %/\;'O‘;m'
jlml
The normalization condition of the wave function reads
({01210, Ofpp, M) = CF, + B3, + Y (DY (Iv)* + > [FN (Jv))*+

GNi GNi

+ > DYDY (Jv) + FN (I EY ()L (GiliN) = 1.
GNiGI N

The equation of motion leads to the following system of linear equations for each state
with quantum numbers JM:

£y V (J5'Ni') 0 —W (J5'Ni") Cov
V (JjNi)  Ky(GNili'Ai") W (JjN) 0 Dy (Jv) |
0 W (J5'Ni') - —V (J§'Ni") —Ey, -
—W (Jj\i) 0 —V (JjN) =K (GXilj' ") —FY7(Jv)
CJZI
i N N Ng
D3 (Jv) + Z D3 " (Jv)Ly(jAilj N'")
j/)\/i/
=5 !
nJ B, 4)
—FM(Jv) = Y YT ()L (Nl N
j/)\/i/

The explicit expressions for the quantities entering the above formulas will be inspected
one at a time

A YAV S AN )\/i/ Ai j/ jl A
EJ(JM\J/\Z)—WWNZ%J‘ jlj/{ i J XN }
J1
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v (J50) = (|{ oo, 1], JM(JM)}D

> (o (GXis X&) + Ly (il X)) T (TN,

1
= L (Jj\i) —
\/_ i

\/_

As a result of the application of the equation of motion method, the matrix elements
V (Jj\i) between quasiparticle and quasiparticle@)phonon states differ from those obtained
earlier [2] by an additive containing 7 (j\i|j'\'i'):

(J)\Z\J')\")—mmfzw N it A
15" P i J XN [

J1

17y

W (JjNi) = <\{[a;M,HJ FRY]) =15 e ) 23 -

47TJ

T2 AnWi) [ z:J(jAz'U’Xz"')—wJ;%//IJ(in\j’A’z").

)\’j’z i''1o

The matrix elements W (JjAi) appear after the introduction of the backward-going terms
in the operator (3) and they present a central issue of this work.

1 GXili' Ny = ([{Pixs (T20) , [H, P (700 3]

Ly (Gl NE) + 1y (5N | h) =
=20, Oxn0iir (wai +€5) + L (GNGND) (€515 +wair +wai) — Ry (GAil7' N,

1
Ky (GXlj'NT) = 5 [y GG + Ly (X A0

1
Ry (G|’ Ni') = 1 Z (A, (Nixi) L (F'N|jNi) + Ay (Niad") Ly (G| Nin) ]+

9170

+o Y A (Minda) | £ (il Ain) £ (5N i) +

A1i1925170

NG

+ Ly (G’ N |jadin) L (GAi|jaAiz) |

The quantities £ (jAi|j'N'i"), T;(jAi|j’'Ni’) and R (jAi]j'N'i') vanish if the Pauli prin-
ciple is not respected.
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2. NUMERICAL RESULTS

In order to give a qualitative picture of the effect on the structure of the low-lying states,
imposed by the backward-going amplitudes and the Pauli principle, numerical calculations for
133Ba have been performed. This nucleus enters the transitional region where the anharmonic
effects play a gradually increasing role at low and mainly at intermediate energies, and
therefore the results presented in this section may lack some accuracy because the wave
function (2) does not contain configurations to account for these effects. The pairing constants
G, are fitted so as to reproduce the odd—even mass differences.

Our calculations include quadrupole and octupole phonons. The strength parameter ()
is adjusted so that the odd energy spectrum of the low-lying states is reasonably close to
the experimental values, while (%) is fixed by the experimental energy of the first octupole
state of the neighbouring even—even nucleus. As a result, the energies of the first quadrupole
state in '3?Ba have a value that is much higher than the experimental one in the models
studied. Moreover, if x(?) is fixed within the model which takes account of the GSC, the
values of wo, are systematically increased of about 10% as compared to the model, where the
backward amplitudes are not considered. It is worth mentioning that after the introduction of
the anharmonic effects the energy of this state would decrease.

As we move away from the magic number 82 for the neutron subsystem, the correlations
in the ground state tend to increase along with the quantities W (JjA¢). This trend is presented
in Table 1, where W (Jj\i) are evaluated only at the lowest poles. Characteristic feature of
QPM is that quantities, related to both the pairing and the multipole-multipole interactions,
enter the expressions for the interaction vertices, producing some competitive effects between
them which are central for the understanding of the behaviour of V(Jj\i) and W (JjAi)
along the isotopic chain. Having the lowest quasiparticle energies, the states 1hy1/2, 3812
and 2d3/, experience the greatest part of the interaction with the remaining quasiparticles in
the ground state.

Table 1. Values of the matrix elements V2 (Jj\i) and W2 (Jj\i) for >3Ba calculated for J™ =
1/2%,3/2%,11/27,5/2%,7/2" at the lowest poles

State | Pole’s structure %% w2 R 1+L
12+ 2d3/2 Q@ 21 0.1225 | 2.1 -0.43 | 0.932
32 2d3/2 @ 21 0.0445 | 1.72 0.072 1.031
1172~ 1hi1/2 @ 21 0.0493 | 3.92 -1.25 | 0.753
512+ 2d3/2 @ 21 0.047 0.14 | -0.068 | 0.986
712" 2d3/2 @ 21 0.118 | 0.439 | —0.68 | 0.874

The quantities R (Jj\i) and £ (JjAi) experience a strong dependence on the degree of
collectivity of the vibrational states in the neighbouring even—even nuclei. As seen from
Table 1, their values increase as we move away from the magic number of the neutron
subsystem. As far as we study the low-lying states only, it is mainly the first quadrupole state
that influences them.

For reasons of conciseness, we introduce the following notations, indicating the different
variants of the model:

e QPM — standard model as given in [1];

e QPM_P — model, including only the Pauli principle;
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e QPM_BCK — model, including backward amplitudes but not the Pauli principle, i.e.,
L, 7 and R are set to zero;

e QPM_BCK_P — model, including backward amplitudes and the Pauli principle (see
Eq. (4)).

52— 1848
_
2 1508 5 1460
3/2F —=—=L 1455
7/2t ———993
5/2f ———892
1/2f —— 539
52t —— 479
7/2"F ——— 399
3/2* 302 3/2t ——— 331
5/2+j—t 291 5/2* 292
11/2- 288
127 ————1219 12— 211
1/2F —— 156
3/2f — 85
12t ——0 112 ———"—0 112 ——mmmmmm0 12t ———0
EXP QP QPM QPM _BCK_P

Low-lying energy spectrum of '**Ba [9] (in keV)
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Solving the system of equations (4), one can find the structure of the wave functions (2)
and the energies of the excited states. Working in a diagonal approximation for £; and 7, this
system reduces to a generalized eigenvalue problem. In the figure a comparison between the
experimental values of the energies and the theoretical calculations within different versions
of the model is presented.

We restrict the calculation to six neutron states 1/2%, 3/2%, 9/27, 11/27, 5/2% and
7/ 2%, As mentioned above, the values of x(2) are determined by the spectrum of the odd—
even nuclei. In order to perform a comparative study of the levels’ positions, we fix the
values of x(2) in QPM_BCK_P and keep them constant in the calculations within the other
versions of the model.

From this figure it can be seen that for states near the Fermi level, the first solutions,
obtained after the inclusion of the backward-going terms, become closer to the first poles and
consequently closer to the second solutions, thus significantly reducing the gap between the
first and the second states with signatures J™ = 1/2%,3/2%,11/27. For the states 5/2% and
7/2% the effect of the GSC is less important because their energies are well above the Fermi
level, and the values of W (JjAi) are therefore small (see Table 1). It is due to the effect of
the correlations in the ground state that allowed the correct level ordering of the first several
states of this isotope.

Along with the experimental energies, our calculations provide a reasonable description
of the spectroscopic factors for (d, p) reactions (Table 2).

Table 2. Experimental and theoretical spectroscopic factors of the lowest states with J" =
1/2%,3/2% for '**Ba

State | EXP | QPM | QPM_P | QPM_BCK | QPM_BCK_P

1727 | 0.18 | 0.176 | 0.182 0.246 0.231
32% | 03 0.29 0.297 0.34 0.34

The observed differences in the last four columns in this table are due to the quasiparticles
in the ground state that additionally modify the single-particle occupation numbers, giving us
a good idea of the removal of the backward amplitudes.

Finally, we examine the effect of the GSC and the Pauli principle on the fragmentation
of the single-particle states among complex quasiparticle@phonon states. In the QPM_BCK
versions of the model, the spectroscopic factors for the (d,p) and (d,t) reactions are written
as follows:

Sgtf;p) = (CJVUJ - EJVUJ)Zv
@) (%)
SJZ/) = (CJD'UJ +EJVUJ)2.

We notice that serious deviations from the expressions for these quantities within the
standard QPM (C3,u?, C% v%) may occur due to their non-quadratic behaviour with respect
to u; and the presence of the backward amplitudes F;,. Again, in the case when the core
has a magic number of nucleons, expressions (5) yield the classical quantities because of the
step-wise behaviour of w; and v; in these nuclei.

We examine only levels in the vicinity of the Fermi level, as for them the interaction in
the ground state is stronger than for those lying at higher energies. Furthermore, the values of
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R (JjAi), which effectively result in a shift of the poles, thus changing the gap between the
pure one-quasiparticle states and quasiparticle@phonon states, along with the re-normalization
factors (1 + £ (JjAi)) exert influence on the single-particle fragmentation as well.

CONCLUSION

We generalized the basic equations of the quasiparticle—-phonon nuclear model to account
for effects of the ground state correlations and the Pauli principle. As an illustration of our
approach, calculations on the structure of the low-lying states in '*>Ba have been performed.
The comparison between theoretical calculations and experimental data for '33Ba has shown
that in order to describe the structure of the low-lying states in odd—even mass nuclei far from
the magic numbers one needs to take into account the Pauli principle and the ground state
correlations effects simultaneously. To improve this approach a self-consistent description of
the mean field with more realistic effective nucleon—nucleon forces is desirable.
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