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OU3UKA BJIEMEHTAPHBIX YACTUIl U ATOMHOI'O SAJPA. TEOPUA

BRST CHARGES FOR FINITE NONLINEAR ALGEBRAS
A. P.Isaev®', S. O. Krivonos“?2, O.V. Ogievetsky 53

¢ Joint Institute for Nuclear Research, Dubna
b Center of Theoretical Physics4, Marseille, France

Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class
of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three
generators and ghost—anti-ghosts commuting with constraints. We consider a one-parametric family of
quadratic algebras with three generators and show that the BRST charge acquires the conventional form
after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a
nonlinear involution, which implies the existence of two independent BRST charges for each algebra in
the family. These BRST charges anticommute and form a double BRST complex.

Hexkotopsie unrpenuents: BPCT-KOHCTpYKIMU W1 KB HTOBBIX Jrebp JIn mprMeHeHs! K Golee IIu-
POKOMY KJI cCy KB Jp TUUHBIX Jjrebp cBs3eil. Mol crpoum BPCT-3 psp st KB HTOBO# sreGpsr JIu ¢
TpeMsl TeHep TOp MH ¥ JyXOBBIMH- HTHIYXOBBIMH I€PEMEHHBIMH, KOMMYTHUDPYIOIIUMH CO CBS3IMH. MEI
P CCM TPHUB €M OJHOIN P METPUYECKOE CEeMEHCTBO KB AP THUYHBIX JIre6p ¢ TpeMs oOp 3yIOIIMMU U I10-
K 3bB eM, yTo BPCT-3 psax mpuoOper er cT HI pTHYIO (hopMy Iocie Nepeornpene/ieHns] TyXOBbIX Iie-
peMeHHbIX. MoauUIUpPOB HHbIE 1yXOBble NepeMeHHble 00p 3yl0T KB Ap THuHy Jjrebpy. CemeiicTBO
P CCM TpHUB eMbIX Jre6p o6l 1 eT HeJMHeWHOI MHBOJIOLMEH, KOTOp S NMpPEeNIoN I' eT CYLIeCTBOB HHe
1Byx He3 BUcuMbIX BPCT-3 psanmoB g X kmoit nredpsl u3 cemeiicts . Ot BPCT-3 psaapl  HTUKOMMY-
TUPYIOT U hopmupyloT aBoiiHON BPCT-komiiekc.

PACS: 11.15.-q; 02.20.Sv

INTRODUCTION

The construction of BRST charges ) for linear (Lie) algebras of constraints is well
known. In the case of nonlinear algebras, despite the existence of quite general results
concerning the structure of the BRST charges (see, e.g., [1,2,7] and references therein), the
general construction is far from being fully understood. The main reason is the appearance
of nonstandard terms in (). Another issue is a possible existence of nonlinear invertible
transformation which preserves a certain form of relations (say, leaves the relations quadratic).
The BRST charge might have a simple form in one basis, while in other bases it becomes
cumbersome.
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Among the quadratically nonlinear algebras there is a special class of so-called quantum
Lie algebras (QLA) (see [5-8] and references therein). The additional QLA restrictions help to
construct explicitly the BRST charges [7-9]. The main ingredient of the construction in [7-9]
is the modified ghost—anti-ghost algebra which is also quadratically nonlinear. Moreover, in
general, the ghost—anti-ghosts do not commute with the generators of the algebra. Unfortu-
nately, the class of QLAs is not wide enough to include many interesting algebras. Therefore,
it seems desirable to extend at least some elements of the construction of the BRST charge
for QLA to broader classes of quadratic algebras. Here we report on some preliminary results
in this direction. In Secs.1 and 2 we relax one of the restrictions to make the algebra of
constraints commute with the ghost—anti-ghosts. The BRST charges @) can be built explicitly
in this case. In Sec.3 we discuss an example of QLA with three generators and present its
BRST charge. In the next Section we construct BRST charges for a one-parametric family
of quadratic algebras. Two nontrivial features arise. First, the BRST charge () takes a con-
ventional form after a redefinition of the canonical ghost—anti-ghost system. The algebra of
modified ghosts is quadratic as for QLAs. Second, the family admits a nonlinear involution; it
follows that any algebra of the family has two different bases with quadratic defining relations
(two «quadratic faces») and therefore two different BRST charges. It turns out that these
BRST charges anticommute and form thus a double BRST complex.

1. QUANTUM SPACE FORMALISM

Let V41 be a (N + 1)-dimensional vector space. Let R € End(Vyy1 ® Vy41) be a
Yang-Baxter R matrix, that is, a solution of the Yang—Baxter equation

Ra3 R12 Ras = Riz Rz Ri2 € End(Vv1 ® Vi1 @ Vi) (L.1)

(here 1,2 or 2,3 denote copies of the vector spaces Vn4; on which the R matrix acts
nontrivially) or, in components Rég (A,B,C,D =0,1,...,N),

C>Cs pB1Ds BB C1Cy pD2Bs pB1B
Raza; Baje: Bpicl = Raja; Belay Reip;- (1.2)
Consider an algebra with generators x4 = {xo0,x:} (¢ =1,..., N) and quadratic relations
RSExcxp=xaxs or (1—Ris)xyxz =0. (1.3)

This algebra is usually called «quantum space» algebra.
We extend the algebra (1.3) by ghosts ¢ with the following commutation relations
with x4
xac? = cPFEY xe. (1.4)

Here F' is another Yang—Baxter matrix,
Fys Fip Fo3 = Fig Fo3 Fig, (1.5)
which is compatible with the matrix R in the sense that

Ros Fig Fog = Fig Fos Ria,  Fas Fig Rog = Ryig Fos Fia. (1.6)
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The matrix F' is called «twisting» matrix for the Yang-Baxter matrix R (Egs.(1.1), (1.5)
and (1.6) imply that the twisted matrix R = FRF~! satisfies the Yang-Baxter equation
as well). _

The multiplication of ghosts is «wedge» with respect to the matrix R; for quadratic
combinations it reads

el =P @ PY, — RY), 15, = oL, (1.7)

The algebra (1.3), (1.4) and (1.7) is graded by the ghost number: gh(xa) = 0,
gh(c?) = +1.
The element
Q:=c"xa=cxi+xo (1.8)
can be interpreted as a BRST operator for the quantum space algebra (1.3). Indeed, us-
ing (1.3), (1.4) and (1.7) one checks that Q2 = 0,

Q% =2 xy <2><2> = c®cf Fiaxy xy =

2 ® (1 - Ri) Fia x1) x2) = 2 ® ¢ Fip (1 — Rua)x1) X2y = 0.

In the next Section we will consider the special choice of Yang—Baxter matrices R and F'
for which the generator x( is a central element for the algebra (1.3) and (1.4). In this case,
one can fix xo = 1 and then represent the ghost variable ¢° as a series

C = Z Z 2k+1 ‘® cllXZl z]kk+1b11 - bjk (gh(CO) — _|_1) ’ (1.9)

k= 1207]5 1

where XJ1 Jk  are constants and by = {bo,b;} are anti-ghost generators with the ghost
A ghost g g

number gh (b 4) = —1. The anti-ghosts b4 satisfy

baxs = F$8 xc bp, (1.10)

babp = (L — Riip)br ® by, (1.11)

bacP = —c” (R"HGE be + DX, (1.12)

where D is a constant matrix such that D§’ = 0, D} = §%. The compatibility of ¢ (1.9)
with (1.4), (1.7) and (1. 12) yields the unique solution for tensors Xf 1 2k+ in terms of the
matrix components F{Z and RGE. In papers [7,8] we analyzed the case F' = R with a

particular R matrix (see Eq. (2.1) below) and found in this case the unique solution

G170
Xpd = () (1= B+ Rt B (14 (<) Ry R BD)
- A 5 TP 28y Peuy |
(1.13)
where Ry := Ry 1 and ig,jm = 1,2,...,N. In the next Sections we will investigate

examples of quadratic algebras (1.3), (1.4) and (1.7) with F' # R.
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2. BRST OPERATOR FOR FINITELY GENERATED QUADRATIC ALGEBRAS

Consider a (N + 1)? x (N + 1)? Yang-Baxter matrix with the following restrictions on
the components RGE [3]:

Ry =01, RY=CY{, Ry =R{p=0p 2.1)

(other components of R vanish). Small letters ¢,j,k,... = 1,..., N denote indices of the
N-dimensional subspace Vy C V.
For the R matrix of the special form (2.1), relations (1.3) are equivalent to

[x0, xi] = 0 and (1 — 012) X1y X2) = Cf; X0 X1)-

The generator X is central and one can rescale the remaining generators, x; — Xo, Xs- Lhe
rescaled generators (still denoted by x;, ¢ = 1,2,..., N) satisfy relations

ki k k 1
Xi1 Xis = Tiyiy. Xk Xko = Cili, Xky OF X1) X2) — 012 X1) X2) = Cf2> X1)- (2.2)

For the R matrix (2.1) the Yang-Baxter equation (1.1) imposes certain conditions for the
structure constants U,?l and C’fj which can be written in the concise matrix notation [4, 6] as

012023 012 = 023 012 023, (2.3)

Cl%) 01%) =023 C’f; Cf; + C% 01%)7 2.4)
01% 013 = 023012 CQ<§>, (2.5)

(023 Cyy + Ciay) 013 = 012 (023 Cyy + Oy ). (2.6)

The condition (2.3) says that o is the braid (Yang-Baxter) matrix, condition (2.4) is a
version of the Jacobi identity. The quadratic algebra (2.2) with conditions (2.3)—(2.6) is
called quantum Lie algebra (QLA). The usual Lie algebras form a subclass of the QLA
corresponding to o,’ = 6,87 (i.e., o is the permutation).

Below we consider the simplest, unitary, braid matrices o, that is,

aﬁ{naﬁ =oFst or o? =1, 2.7)

Then (2.6) follows from (2.5) and symmetries of (2.2) imply that
(1+012)Cly = 0. 2.8)

The generators ¢, b; (i = 1,...,N) of the ghost—anti-ghost algebra satisfy quadratic
relations

biy by = —G12byy bay, et =~y 2.9)

by ¢ = —c1 55t by + I, (2.10)
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where 610 = (;512012(;51_21. These relations are obtained from Eqgs. (1.7), (1.11) and (1.12) for
the special choice of the matrix F":

Fl = ¢y, Fpo =Fgy =0 2.11)

(other components vanish).
A cross-product of the QLA (2.2) and the ghost algebra (2.9), (2.10) is defined by the
commutation relations (1.4) and (1.10),

b1y X2) = P12 X1) b2y,  X2) ?=cl gy X1)- (2.12)

We denote this cross-product algebra by 2. For consistency of the algebra {2 we require that
the matrix ¢ satisfies relations

012 $23 P12 = Po3 P12 023,

@12 P23 012 = T23 P12 P23, (2.13)
D12 P23 P12 = P23 P12 P23,
B12023C 5 05 = O3 o, (2.14)

which follow from relations (1.6) and (1.5) with the Yang-Baxter matrices R and F' given
by (2.1) and (2.11).

Now the construction (1.8) of the BRST operator for the QLA (2.2) and the ghost alge-
bra (2.9), (2.10), (2.12) gives the following result [10]:

1 . .
Proposition. Let © = —3 dc qﬁmeC',:m by-. Then the element () € S,

Q=7dx;+€q (2.15)

satisfies
Q2 =0. (2.16)

For a general braid matrix o, there are always two possibilities for the twisting ma-
trix ¢. The first possibility is ¢ = o; it was investigated in [5-9]. The second one is
ki =k 5! which leads to the tensor product of the algebra (2.2) and the ghost-anti-ghost
algebra (2.9), (2.10). In other words, with this choice, the ghosts commute with the generators
of the QLA,

bix; = x;jbi, ¢ xj=x;¢" (2.17)

This possibility will be considered in the next Sections on examples of 3-dimensional nonlinear
algebras.
3. EXAMPLE OF A 3-DIMENSIONAL QLA

In this Section we present an explicit example of a finite-dimensional QLA (2.2)—(2.7)
and construct the BRST charge for this algebra.
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The algebra we start with has four generators {xo, X1, X2, X3} Which obey the following
quadratic relations:
X1, x2] =0, [x1, xs] = axi + xoxe, [x2, x3] = ax1 xz,

3.1)
[XO?XZ'] :07 i:1a273a

where o # 0 is a parameter. This parameter can be set to one, o = 1 by rescaling of the
generators x 4. One can write (3.1) in the form (1.3) with the R matrix

RED = 0580 + (85 67 + adi' 67') (06 65 — 68 0p) +
+ o (67165 6263, — 65 6P 6% 6%) . (3.2)

The matrix (3.2) satisfies the Yang—Baxter equation; it is of the form (2.1) with

o} = 5} 0% + a8} 6] (61 07 — 6% 3F) + o (61 93 57 6 — 0 6] 6 57)

J i 57 (5153 3 51 o 3.3)
Cl, =606 (667 —036}), i,4.k1=1,23.

The matrix o has the form 012 = Pia + u12, Where ujs = —ug; and u25 = 0, so 0% = 1
(o belongs to the family F in the classification of GL(3) R matrices in [11]). Thus, for
xo = C = const, the algebra (3.1) is an example of the QLA (2.2)—(2.7).
According to the choice of the structure constants, the noncanonical ghost—anti-ghost
algebra (2.9), (2.10) and (2.17) reads
() =acdct, (2)2?=(3)?=0, {c,3}={32 =0, {c, 32} =acd?
(b1)? = (b2)? = (b3)? =0, {b1, ba} ={by, b3} =0, {b2, bs} = abyibs,
{b1, '} = —acdby + 1, {ba, ?} = {bs, 3} =1, {bs, ?} = ac?by,
{ba, '} = —acd by, {bs, '} =act by, {b1, P} ={b1, &} = {ba, 3} =0,

[Xi’ Cj] =0= [Xi’ bj]v
(3.4)
where {.,.} stands for the anti-commutator. Then the BRST operator (2.15) for the ghost—
anti-ghost algebra (3.4) has the standard form

3
Q= ZCiXi — O b, 3.5

i=1

and one can recheck directly that Q2 = 0.
We note that under the following nonlinear invertible transformation of the generators,

X2 — X2 + 7X3,

where a = 27y, relations (3.1) have a different, but still quadratic, form

a
[x1, x2] =0, [x1, x3] = 3 X34 Xxox2, [x2, x3] = 2ax1 X2 (3.6)
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These relations cannot be presented in the form (1.3) with an R matrix (2.1) and any GL(3)
matrix o.

For the ghost algebra (3.4) the Fock space F' is constructed in the standard way. Let V'
be a left module over the algebra (3.1). For any vector ) € V' we require

bil¢) =0, (3.7

i.e., the anti-ghosts {b;} are annihilation operators for all vectors in V. Then the Fock space
F' is generated from V by the ghost operators {cl} (creation operators) and in view of (3.4)
any vector |®) € F has the form

3
|B) = [tho) + > ') + Y i) + P nas), (3.8)
i=1

i<j
where |1 ) € V. The «physical subspace» in F' is extracted by the condition
Q[P) =0, (3.9)

which gives
Xilto) =0, i=1,2,3,...

Since the vector |1)) is annihilated by the first class constraints ;, this vector belongs to the
physical subspace in V.

In the next Section we will show that the quadratic ghost algebra (3.4) can be realized in
terms of the canonical ghosts and anti-ghosts {c’,b;} (cf. the standard deformation of the
algebra of the bosonic creation and annihilation operators [12]).

4. BRST OPERATOR FOR A 3-DIMENSIONAL NONLINEAR ALGEBRA

We construct the BRST operator for the algebra, which generalizes the QLAs (3.1)
and (3.6):
[J, W] =a1T +agJ?, [J,T)=0, [T,W]=a3JT, 4.1)

with a1, az2,a3 # 0. By rescaling of the generators, two of three coefficients {a1,as} or
{a1,a3} may be arbitrarily fixed. In what follows we prefer to leave all these coefficients
free and fix them at the end of calculations, if needed.

The values as/as = 1 (respectively, az/as = 4) correspond to the algebra (3.1) (respec-
tively, (3.6)), where we should identify

x1=J, xa=T, xz=W.

For as/as = —16 or as/as = —1/4 this algebra is a finite-dimensional «cut» of the bosonic
part of the N = 2 super W3 algebra [13] {J = J_1,T = L, W= Wa}.

The algebra (4.1) is quadratic and we may construct the BRST charge using quadratic
ghosts along the lines discussed at the beginning of this paper (see [5-10] also). Neverthe-
less, to make steps more transparent we first construct the BRST charge with the canonical
ghost—anti-ghost generators and then define the nonlinear ghosts systems in which the BRST
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charge drastically simplifies. So we introduce the fermionic ghost—anti-ghost generators
{bs,c’,br,c’ by, c"} with the standard relations

{bs,c’} =1, {br,c"} =1, {by,cV}=1 4.2)

(other anti-commutators are zero).
By virtue of a rather simple structure of the algebra (4.1) the BRST charge can be easily
found to be

Q=c’J+"T+"W—-aic’"br —asTc"c"by + az JcWe'by, (4.3)
where we assumed the «initial condition»
Q= T+ T+ W+ higher order terms 4.4)

and used the ordering with the annihilation operators {b;} on the right. If we relax the «initial
condition», then the BRST charge is not unique. For example, the operator Q' = @ + pJ ¢V
(u is a constant) satisfies (Q')? = 0 as well.

The last two terms in the BRST charge (4.3) are unconventional. Let us now rewrite the
BRST charge as follows:

Q= (c‘] + as CWCJbJ) J+cVw - a1 (c‘] + as CWCJbJ) chT—|—
+ (" —azc""b,) T. (4.5)

It is now clear that the BRST charge (4.5) acquires the conventional form (of the type (2.15))

after introducing «new» ghosts {c”’,cT c"'}:
¢ =c’+acVeby, T =c" —azc’Mby, NV =V, 4.6)
In terms of new ghosts the BRST charge (4.5) reads
Q= AT+ T+NVW— achchT, 4.7

in agreement with the ideas discussed above and in [5-10]. It is straightforward to write the
relations for the new ghost—anti-ghost generators (4.6); they form a quadratic algebra

{c‘],c‘]} = —2as¢’ {c‘],cT} = —azct W, {c‘],bJ} =1-—aycVby,
{CJ,bw} = a2 CJbJ, {CT, bT} =1- as CWbJ, {CT, bw} = as CTbJ, (48)
{MV bw} =1,

other anti-commutators are zero. To relate this ghost—anti-ghost algebra and the BRST
charge (4.7) with the algebra (3.4) and the BRST charge (3.5) we need also to redefine the
anti-ghost variables

by =by, br=Dbr+acVbsbr, by =bw,

and fix ao = a3 = «a, a1 =C.
Thus, we see that the price we have to pay for the conventional form of the BRST charge
is the quadratically nonlinear ghost—anti-ghost algebra, as it has been claimed in [5-8, 10].
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4.1. Double BRST Complex. An interesting peculiarity of the family (4.1) of nonlinear
algebras is an existence of nonlinear redefinitions of the generators. Redefine the generator
T— T,

T=T+pJJ (4.9)

(6 is a constant). In terms of generators {.J,7,W} the algebra (4.1) becomes cubic for
general 3. However, it is amusing that for

2a2 — as

5= (4.10)

2&1

the commutators of the generators {.J, 7, W} are again quadratic,

[(J, W] =aT +axJ? [J,T)]=0, [T,W]=asJT, (4.11)
where
~ ~ as ~
a; = ay, as = ?, az = 2&2. (412)

By rescalings, one can set a; to 1 and leave ¢ = 2as/as as the essential parameter of the
family. The transformation (4.12) is the involution £ = 1/t.

Therefore, our (in general, cubic) algebra has two «quadratic faces». Now we immediately
conclude that for the second «face» another BRST charge () exists,

@ =l T+ T+"W=-a1c’"br —asTc by +ayJc"e'by (4.13)
(it is constructed in the same way as (4.3)). Moreover, one checks that

0% =0, and {Q,é} — 0. (4.14)

Thus, for our algebra (4.1) we have two nontrivial BRST operators @, @ forming a double
complex. Both operators are linear in the generators of the algebra and satisfy the initial
condition (4.4) but in different bases: @ in the basis {J,T,W} and @ in the new basis
{J,T,W}. In the basis {J,7,W}, the BRST operator ) does not satisfy initial condi-
tion (4.4), it contains nonlinear in J terms. The same is true for @ in the basis {J, T, W}.
For an algebra, having several quadratic faces, related by nonlinear transformations, one can
impose standard initial condition in any of them and build — in general, nonequivalent —
BRST charges (cf. the Lie algebra [z,y] = y and transformations = — z + f(y), f is a
polynomial).

CONCLUSION

We extended some elements of the construction of BRST charge for quantum Lie algebras
to more general quadratic algebras. We explicitly found the BRST charges in the examples
when the constraints commute with the ghost—anti-ghosts. We discussed an example of a QLA
with three generators and presented the BRST charge for this algebra. As another interesting
example we considered, as an analogue of a QLA, a one-parametric family of quadratic
algebras with three generators. On this simple example we have shown that one can redefine
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the ghost—anti-ghost system in such a way that the BRST operator takes the conventional form
Q = c'x; + «ghost terms» (2.15). The modified ghosts form a quadratically nonlinear algebra
as for QLAs. In addition, the members of this family admit two different presentations with
quadratic defining relations. In agreement with general considerations in each presentation
there is a conventional BRST charge. Being written in one basis they give rise to two
inequivalent BRST charges @, Q which anticommute and form a double BRST complex.
We think that any algebra possessing several quadratic faces should have inequivalent BRST
charges.

As immediate applications of our results one may try to construct the modified ghost—
anti-ghost system for some known nonlinear (super)algebras to simplify their BRST charges.
Being extremely interesting (for us), this task seems to be less important than an analysis of
situations with several BRST charges.
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