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QCD VACUUM TOPOLOGICAL SUSCEPTIBILITY
IN A NONLOCAL CHIRAL QUARK MODEL

A. E. Dorokhov'

Joint Institute for Nuclear Research, Dubna

The topological susceptibility of QCD vacuum is studied in the framework of a covariant chiral
quark model with nonlocal quark—quark interaction. The relation of the first moment of topological
susceptibility x’(0) and the «spin crisis» problem is briefly discussed. It is shown, in particular, that
one always gets the inequality x’(0) > X6z

Tononoruueck s BocipuuMunBocTh B KyyM KXJI m3ydeH B p MK X KOB PH HTHOH KHp JIBHOU
KB PKOBOH MOJIEJIM C HENIOK JIbHBIM B3 MMOJEHCTBHEM KB pkoB. Kp TKo o0cyXn ercss poib IepBoro
MOMEHT TOHOIIOTNYECKOH BOCIIPUIMUYNBOCTH B PEIIEHUH TPOOIEMbI «CITMHOBOTO KpU3UC ». B 4 cTHOCTH
TIOK 3 HO, 9TO Bcern BhIMonHgercs Hep BeHctBo X' (0) > Xoz1.

It is well known that due to Uy (1) axial Adler—Bell-Jackiw anomaly the isosinglet axial-
vector current

I =" asa M
f

is not conserved even in the chiral limit, and its divergence equals

0uJ (Y () = 2N Qs (x), )

where )
Qs(x) = (as/8m)Gy, (2)G),, (@) 3)

is the topological charge density. The correlator of singlet currents is defined as
HEE?,U«V(Q) = i/d4x eld® <O ‘T{J,Sg) (2)JY (O)TH O> =

= (unIV - gurqu) quo})T(QQ) + q}qul/HS)’)L (Qz) “4)

In the chiral limit the longitudinal part of the correlator defines the topological susceptibility,
i.e., the correlator of the topological charge densities, Q5(x),

X(@*) =i /d4x e'(0|T {Qs5(2)Q5(0)} 0), ©)
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with the relation (see, e.g., [1])

2Ny)?
QY = 4 Qi) X(@). ©)
At high Q? the operator product expansion (OPE) predicts [2]
X (@ = 00) = —7= (22 (G)7) +0Q72), ™

where the perturbative contribution has been subtracted.
At low Q?, x(Q?) is represented as a sum of contributions coming purely from QCD and
from (7, 7)-mesonic resonances [1]:

mMeymq
My, + Mg

X(@Q@)] g QCD — (Tu) — x'(0)Q*~

m2 1 2

_ _,2r Q2 My — Mg 2 1 my
4 my+ma) Q*+mZ  3Q?+m2
where the first term has been found in [3] and its chiral limit follows the Crewther theorem [4]

maintaining that x (0) = 0 in any theory where at least one massless quark exists.
The estimates of x’(0) existing in the literature are rather controversial:

+0(@Q"Y), ®)

Y(0) = (48+6 MeV)? [5],  x/(0) = (26 +4 MeV)? [6]. 9)

Both estimates were found within the QCD sum rules method. These values of the first
moment of topological susceptibility have to be compared with the value obtained in the
Okubo-Zweig-lizuka (OZI) case, the case free of axial anomaly, which is

2

! = s ~ M 2.
Xoz1(0) 2N, (39 MeV)

The principal point is that smallness of x’(0) is the base for the one of the mechanisms
explaining «proton spin crisis» problem [7]. Indeed, within this approach it is assumed that
the flavor singlet axial charge ag (QQ) is proportional to the product of the first moment of
the QCD topological susceptibility taken at scale Q2 and an RG-invariant coupling of «OZI
Goldstone boson» with nuclon:

1 _
ao(Q?) = S OVX () T (10)

This mechanism has been, however, criticized in [8]. All this makes important further model
estimates of x’(0).
Within the chiral quark model' [9] based on the nonlocal structure of instanton QCD

IThe explicit calculations below are performed in SU(2) sector of the model.
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vacuum [11] the full isosinglet axial-vector vertex becomes [10]

(VAT - \/3(R))

k/2 _ k2

2

F25(k7q7k/ =k+ q) = |:'Yp, - (k + kl)ﬂ

G, 1-— GJpp(qQ)

du
— o /MKYM (k) — — P2 )

}%7 (1)
where M (k) is dynamical, momentum-dependent quark mass; G and G’ are 4-quark couplings
in isotriplet and isosinglet channels, correspondingly, and

Jpp(q*)0ap = —# / ng];M(k)M(k +q) Tr [S(k)vsm*S (k + q) v57°] . (12)

In (12) the (inverse) quark propagator is S~1(p) = p — M (p). Because of axial anomaly the
singlet current does not contain massless pole, since as g> — 0 one has

1 - GJpp(¢®) 1z
=G2L 13
_q2 MqQ ’ ( )
where fr is pion weak decay constant and M, = M (0). The cancellation of the massless
pole occurs with the help of the gap equation. Instead, the current develops a pole at the
n'-meson mass!, 1 — G'Jpp(q* = —mi,) = 0, thus solving the U, (1) problem. The vertex
(11) satisfies the anomalous Ward-Takahashi identity:

gl (k, g, K =k + q) = 755 (K) + S5 (k)95 + s

2 M(k’)M(k:)( Cé:) o

1— =
1-— G/Jpp(q2)

where the last term is due to the anomaly. Thus, the QCD pseudoscalar gluonium operator
is interpolated by the pseudoscalar effective quark field operator with coefficient expressed in
terms of dynamical quark mass. This is a consequence of the fact that in the effective quark
model the connection between quark and integrated gluon degrees of freedom is fixed by the
gap equation.

For completeness we display the vertex corresponding to the conserved isotriplet axial-
vector current

a , a Mk + M (k
Dis(k,q. ' =k+q)=T ['Yu - qu%_
2
LOE? 2 (\/M(k;’) - \/M(k;))
- (k + k —q q2 )M k,Q _ ]f2 75 (15)
satisfying the axial Ward-Takahashi identity
@85 (k, q, k') = 5Sp ' ()T + TS5 (k). (16)

ISee the previous footnote.
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The axial-vector vertex (15) has a kinematical pole at ¢ = 0, a property that follows from
the spontaneous breaking of the chiral symmetry in the limit of massless u and d quarks.
Evidently, this pole corresponds to the massless Goldstone pion.

The quark matrix elements of currents corresponding to vertices (11) and (15) can be
expressed in terms of real form factors

<pISI

where 73 = (1,73/2); u4(p) are spinor solutions of the Dirac equation for free quarks,
and the currents are defined as

AR O ps) =0 (T [5G0 (@) = 40565 ()] walp), (D)

d*k
A (@) = / Gy ¥ BT (0. K = K+ @)k + ), (18)

with (k) being the solutions of the Dirac equation
[@—M(k)} W(k) = 0. (19)
By using the Dirac equation, one gets

w2y _ pa @ 2y (1=G'/G) d'k ,
A (%) =0, A3 = T / i 2V MM R (kv + o).

Comparison with (17) leads to the relations for form factors (taken in the local limit
M (k) = M,)

A (P =1, &P () =2M/g?, GO0 =1, G (0)=0,

resembling the results for a model of free massive quarks.
Full model calculations lead to the following expression for the topological susceptibil-
ity [10]

— (2N5)*x(@%) =
) o G'Jap(Q%) 1
=y (1= G ) { @ (@) 1- FHEE |
2 2 G’ 2 GJar(Q%) G-¢
+ M2Jpp (Q%) <1 - WJAP(Q )> [ ]\2(12 G- G'JPP(QQ)]] i

s [y [ 2 T far) - M<k+Q>M<k>]]2}, 0)

where D(k) = k? + M?(k) and the integrals J4p(g?) and J,4(g?) are defined by

Iarle?) = ANy [ s VAT D,
Ta(@) = L [ ST [SWF b+ )8k + T8k + 0.8)].
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At large Q% one obtains the power-like behavior consistent with the OPE prediction (7),
namely

2Ny M? el
(N} X (@ = o) = LT (1 - 5) | 1)
At zero momentum the topological susceptibility is zero:
x (0) =0, (22)

in accordance with the Crewther theorem. For the first moment of the topological susceptibility

we obtain [10]
T e (e C &y

If the OZI rule were exact in the flavor singlet channel and there were no anomaly,
one would have G’ = G and x/(0) = x;(0). But actually one has strong attraction in the
isotriplet channel and strong repulsion due to the anomaly in the isosinglet channel that means
that one has always the inequality G’ < G. The second, negative term in (23) is numerically
suppressed with respect to the first, positive term, J’;5(0)/f2 a~ —0.24. Thus, from the
existence of the anomaly we always have the inequality

x'(0) > X071(0), (24)

and it is impossible to get anomalously small x’(0). At this point we also mention other
alternative approaches to the spin crisis problem based on screening of topological charge in
the QCD vacuum [12,13] (see for review, e.g., [14]).

The constants G and G’ are fixed with the help of the meson spectrum. Approximately
one has G’ ~ 0.1 G. As a profile for the dynamical quark mass we take a Gaussian form

M (u) = Myexp (—2u/A?) (25)

with the model parameters M, = 0.3 GeV, A = 1.085 GeV. Then the estimate for the first
moment of the topological susceptibility is [10]

Y'(0) = (50 MeV)?. (26)

To get the above result we have taken Ny = 3 in Eq. (23). We can see that the model gives
the value of x’(0) which is close to the estimate of Ref. [5]. The influence of the current
quark masses on x’(0) is expected to be small and the contribution of 7 and 1 mesons may
be found from Eq. (8):

X (0) & (28 MeV)?,

and thus x},,(0) ~ (57 MeV)? for the total result.

The model prediction for the topological susceptibility is shown in figure. In the region
of small and intermediate momenta our result is quantitatively close to the prediction of the
QCD sum rules with the instanton effects included [1].
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In the present talk we analyzed the corre-
lation function of the singlet axial-vector cur-
rents within an effective nonlocal chiral quark
model. By considering this correlator the topo-
logical susceptibility was found as a function
of the Euclidean momentum and its first mo-
ment was estimated. We demonstrated that in
realistic situation one always gets the inequality
X'(0) > Xoz1(0), thus discarding the mech-
anism explaining the «spin crisis» based on
anomalous smallness of x’(0). In addition, the
fulfillment of the Crewther theorem was demon-
strated. It would be interesting to verify the
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Fig. 1. Topological susceptibility versus Q2 pre-
dicted by the model with G’ = 0.1 G, Eq. (20)

predictions given in Fig. 1 by modern lattice simulations.
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