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Recent results obtained by the application of the Bethe—Salpeter approach to the analysis of elastic
electron—deuteron scattering with the separable NN kernel are presented. We analyze the impact of the
P waves (negative-energy components) on the electromagnetic properties of the deuteron and compare
it with experimental data. It was shown that the contribution of the P waves must be taken into account
to explain tensor polarization and charge form factor of the deuteron.

IIpenct BieHBI pe3ylbT Tl P CYETOB YIPYIOro 3JIEKTPOH-IEHTPOHHOIO p ccesHUs B noaxoxne bere—
Commurep ¢ cem p OeMbHBIM SAPOM HYKJIOH-HYKJIOHHOTO B3 UMOACHCTBUA.  AH JH3UpPYeTCsS pOIb
P-cocrosHuil (KOMIIOHEHTOB AeHTpoHHONH MIUTUTYbI bere—Comnmnurtep ¢ OTpULl TeNbHOI 3HEprueil) npu
OIUC HUY DJIEKTPOM THUTHBIX CBOMCTB JIECHTPOH U IPOBOJUTCH CP BHEHUE C OKCHEPUMEHT JIbHBIMH I H-
HeiMU. TIOK 3 HO, YTO y4eT BKJI OB PP-COCTOSHMIA 3H YMTEJIBHO YIy4ll €T COLNl CHe 3 PSAJOBOro (hopM-
¢ KTOp ¥ KOMIIOHEHTOB TE€H30p MONIPU3 LUK JEUTPOH C SKCHEPUMEHT JIBHBIMU J HHBIMHL.

INTRODUCTION

The study of electromagnetic properties of the deuteron helps us to construct the theory of
strong interactions and, in particular, the nucleon—nucleon interaction (see, for example, [1]).
Theoretical research in this field is of topical interest, which is reflected in recent review
articles [2-8]. A large amount of available experimental data stimulate a further development
of theoretical methods, which are often restricted to qualitative predictions. The forthcoming
experiments are expected to provide high-precision data, which will allow us to explore the
region of large-momentum transfer in elastic, inelastic and deep inelastic (DIS) electron—
nucleus reactions.

The fact that nuclei consist of bound nucleons introduces a major problem for theoretical
description of relativistic [—A interactions. The deuteron is naturally the first object in the
row of many other nuclei, and has received a vast number of treatments within many different
approaches. One also finds that nonrelativistic schemes of calculations are widely employed
in the analysis, which can be justified for a few particular cases. On the other hand, the
consistent consideration of the relativistic bound states is offered within the Bethe—Salpeter
(BS) formalism (see, for example, review [8]), which allows a qualitatively new interpretation
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of the physics of the relativistic bound state and should not be regarded as an alternative
scheme only.

We emphasize the covariant description of the BS formalism by taking the separable
interaction, which is still at a stage of infancy. In particular, the role of the abnormal parity
states has not yet been confronted with experimental data, though the necessity is demonstrated
in this paper.

1. BASIC FORMALISM OF THE BETHE-SALPETER APPROACH
We start with the Bethe—Salpeter Equation (BSE) for NN T matrix:

T(xﬂ,é’y(P7p/7p) = Vaﬁ75'y(P7p/;p)+

4
+ z/ (;lT];Va57EA(P, P’ k)Sen(P/2 4 k)Sx,(P/2 — k)T,p.64(P Kk, p), (1)
where P is the total momentum; p and p’ are the relative 4-momenta of the two nucleons
before and after the interaction. They are connected with 4-momenta of the first (¢;) and
second (g2) particles: P = q1 +¢q2, p = (1 — ¢2)/2, 1 = P/2+p, g2 = P/2 —p. Sap(k) is
the one-particle Green function: S,5(k) = [1/(k -~y — m + i€)]as.

The bound state corresponds to a pole in 7" matrix at P> = M2 (Mg is the mass of
bound state) and takes the form:

Los(P,p' )Tsy (P, p)
P? M3

Taﬁ,é'y(Pap/;p) - +Raﬁ,5'y(P7p/ap)v (2)
—_——

other states

bound state (mass=M )

where I, is the vertex function of BSE, and R,g s is regular at P? = M3,
We can express the BS amplitude by the vertex function as

P P
q)aﬁ(Pap) = Sa'y <5 +P) S,B(S <5 —P> F'yé(Pvp)a 3)

and we obtain the equation for the BS amplitude from Eqs. (1)-(3):

. P P d*k
(baB(P7p) - ZS(yn (5 +p> SB/) (5 _p> /WVW/);’)’é(P7p) k)q)'yé(P; k) (4)

2. PARTIAL-WAVE DECOMPOSITION OF THE BS AMPLITUDE

We determine two-particle spinor basis in c.m. frame as U/! Wp)oU ﬁg(Q)T( —p), where
1 is the spin projection, p1 2 is the so-called p spin, which distinguishes the positive- and
negative-energy states. Both of them are necessary to prepare the complete set for the two-
particle bound state. The spinors Uf!(p) are connected with the Dirac free spinors u,(p)
and v, (p) as

Uﬂ(p) _ { uu(P)v P i +i (5)
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The connections between the propagators and the spinors can be written as
[S(P/2+p)] UL (p) = 05,V UL (- p),
[S(P/2 = p)] UL (=p) = p5,@7 UL (p),

where Ep, = \/p? + m?,
SY =1/(V5/2+po F Ep), ST =1/(\5/2 = po F Ep)- (6)

Here, we can write the partial wave expansion of the BS amplitude as

O/ (P, p) = Sary(P/2 4 p)TI3 (P, p)Si5(P/2 — p) =

>SS D G180 (po. IP)TTET2 (P)U,  (7)
LSpip2

where U, = iv270, and T/2971P2 (p) is the spin-angular function defined as

1 1
FJLS/)1p2(p)Uc _ ;L Z (LmpSmg|JM) <§M15M2|Sms> X

Hip2zmrms

X Ym, 0) UM () @ U2 (—p). (8)

We introduce the symmetrical notation of p spin for convenience, the radial part of the
BS amplitude can be written as

¢51.5p(P0, Pl) =Y _ Sppr (po, [PI) 9525, (po, IPI), C))
pl
where S, is
Sy =S8y =Ws/24+po— Ep) ' (Vs/2—po— Ep) ',
S_=8__=(Vs/24po+ Ep) ' (Vs/2—po+ Ep) ",
Se = See = Soo = (5/4 _p(2) ) ((5/4 po E2) 4p0E2) ;

So = Seo = Soe = (2poEp) ((5/4 —pO - Ef,) - ngg) , others = 0.

(10)

The BS amplitude for the deuteron has 8 states: 3S)", 3D, 1P¢, 1P, 3pP¢, 3PP, 35,
3Dy . 3Sfr , 3Df are positive-energy states and the others include negative-energy states.

3. SOLUTION OF THE BSE

After the partial wave decomposition, the BS equation for 7" matrix has the following
form:

Taﬁ(pé, Ip'l, 0, [Pl; 8) = Vap (o, [P'], po, IP; 5)+

+ ﬁ dkO k2 d|k|zva’y(p(/)7|p/|ak0a|k|7s)S’Y’Y(k0a|k|78)T’Yﬁ(k(l)a|k|7p07|p|78)7 (11)
7Y

here the indexes of Greek character correspond to the partial states (a : JLSp).
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We introduce separable ansatz to transform the BSE to a system of the linear equation in
the following manner:

N
Vs (b, [0'], 20, [Pl s) = > Xy 0i . [9') 08" (o, IBD), Ny = A (12)
i,j=1

Then, the solution for the radial part of the BS amplitude can be written as

1rsp(po.[pl) =D Z Spor (0o, 1Pl $)Ais 0" (po. Ipl)es (), (13)

p' i,j=1

where c¢;(s) satisfy the following system of equations:

ZHuc $)Akjc;(s) = (14)
k,j=1
(o) =55 O / ko K[|y (ko k: )95 (ko kg (ko ]). (1)

LSpp’

4. COVARIANT GRAZ-II INTERACTION + P WAVES

To calculate various electromagnetic observables, we use the kernel which added p-wave
parts based on covariant Graz-1II interaction. In covariant Graz-1I interaction (only positive-
energy states are taken into account: 355", D7), the functions g; have the following form [9]:

35+( _ 1—y(p3 —p?)

g, " (o, |Pl) = 75— 253>

! (P2 — p* — )2

3 g+ (p§ — p?)

95" (o, |Pl) = 75—

° (p§ — P2 — 0%,)? (16)
s p2_p2 1_,}/2p2_p2

222 (o pl) — — AP 2(s8 —p?)

(p§ — P2 — 53,)(p5 — P? — (3,)%’
3p+ 3p+ 3g+
g1 " (po.Ip) =95 " (po,|p|) = 95" (po,|p|) =0

Parameters of covariant Graz-1II are given in the Table.
In addition, we take into account the negative-energy states: ' Pf and ' PY. We take g; of
P waves as follows:

g+ DY

94" (po, p|) = 94 " (po, Ip|) = 91 23 (p07 lp)) =0

1pg Ip|

94" (po,IPl) = G s (17)
lpp Po P

9, (o, Ip) = 7522 —— P!

“m (p2 —p? — 22
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Parameters of covariant Graz-II interaction

T 28.69550 GeV~? A1 | 2.718930-107* GeV®

Y2 64.9803 GeV 2 A2 | =7.16735-1072 GeV*
Bi1 | 2.31384-107! GeV | M3 | —1.51744-1073 GeV®
Bz | 5.21705-107 GeV | Moo 16.52393 GeV?
Ba1 | 7.94907-107" GeV | 23 0.28606 GeV*

Boz | 1.57512-1071 GeV | X33 | 3.48589-1072 GeV®

The solution of the BSE can be written as

+
1

35
éf)ss;r (po, IP|) = (c1A11 + c2A12 + csAi3 + car1a)S+97, " (po, IP|)+
3s+
+ (c1A12 + c2Xa2 + c3Ahas + car24)S1 95" (po, [P|), (18)

+
1

3
¢3D1+(P07 Ip|) = (c1A13 + cadas + c3Ass + 04)\34)S+93D (po, |p|),
1 pe 1 po
¢1pe (Pos [P|) = (€114 + c2d2a + c3Azs + cad11)(Segs” (o, [pl) + Sogs”" (po, [P))),

Y (9o, 1p]) + Sogs”™ (0o, |D])).
(19)

¢1pe (o, [P|) = (c1A14 + c2Xaa + c3A34 + aX14)(Segy
¢1pe is even and ¢1pe is odd under po — —po, which are decided by Eq. (7).

5. ELASTIC ELECTRON-DEUTERON SCATTERING

In the relativistic impulse approximation, the deuteron current matrix element can be
written as

. d* — _
'3, DM) = e | i T [Ba (PP TE @u (Pp) (5P (a2)) 7' 20)
T (g) = 3PP (¢?) - LD (), @1

4m

where ® (P, p) is BS amplitude of the deuteron; P’ = P + ¢ and p’ = p+ q/2. q is the
momentum transfer and n = —q?/4M? = Q?/4M?, where M is the deuteron mass. The

vertex of YNV interaction FELS) (q) is of on-mass-shell form. The isoscalar form factors

of the nucleon Fl(SQ) are the summation of two nucleons. To calculate the deuteron form

factors, one should know at least three matrix elements with different total angular momentum
projections and current component, for example, (0].Jo|0), (1]|Jo|1) and (1].J1]|0). The electric
Fc(g?), quadrupole Fg(q?) and magnetic Fiys(g?) form factors are normalized as Fo(0) = 1,
Fo(0) = M?Qp, Fy(0) = upM/m, where m is the nucleon mass, Qp and pp are
quadrupole and magnetic moments of the deuteron, respectively. The tensor polarization
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components of the final deuteron are expressed through the deuteron form factors as follows:

[ 0.1 1 (8 8 1 0

Too |A+ Btan? 2| = —— | -nFoFo 4+ —n*F2 + =n 1+ 2(1 tan? =< | F2

2o_+ an” 5| ﬂ{gnccﬁgn @+ gn | 1+2(1+n)tan” = ) Fy |,
i 0.1 2 6.\ '/ 0

To; _A—I—BtanQ?e_ :%n (77—|—772$in2 5) FMFQsec?e7 (22)
[ 0.1 1

Ty |A + Btan®? = | = ———nFZ,,

22_ 2 2\/577 M

where A and B are the deuteron structure functions.

6. CALCULATIONS AND RESULTS

To see the contribution of P waves, we fix the Graz-II parameters in the Table. And we
introduce the conditions to limit the freedom of the parameters for P waves:

s = =V A1, Aoy = VAo, Aza = VN334, Mg = uj, (23)

Z‘ 2 1P62 1P102 1 pe 1Po _
Hyyls=p2 = 2—772/ dko k= d|K| {Se (94 " "+ 94 7))+ So(94 94t )} L:M2 =0. (29

The deuteron binding energy Ed can be fixed under the condition of Eq. (24). Now we have
two free parameters for P waves: uy4, 3. For example, to fit the F node, we calculate
the changing point of the sign, at 3 = —15. Then the parameter is decided as uy ~ —10
or 9.75. The results of calculations using the set of parameters: v3 = —15, uqy = —10,
O3 = 0.4819 GeV, are given in Figs. 1-5. In Figs. 1-3 the experimental data are taken
from [12]; in Figs. 4, 5 the experimental data are taken from [13] and [14], respectively.
Curve 4 denotes calculation for the covariant Graz-II interaction with only positive-energy
states: 3Sf s 3Df [8] and with the dipole-type nucleon form factors. Curves I, 2, and 3
represent calculations with the dipole-type, Vector Meson Dominance Model (VMDM) [10]
and Relativistic Harmonic Oscillator Model (RHOM) [11] nucleon form factors, respectively.

10° . . . 10? . . .

L o
107 ¢ 3 - RHOM 1 - 2~ VMDM ]
9 - . 3 - RHCM
\ 4= Graz-Il only, dipole 100 k 4 — Graz-II only, dipole
1072 L
1071 E
107 1 Ny
1072 L ‘f
10_4 10_3 1 1 1
0 0 0.5 1 1.5 2
0%, (GeV/c)? 02, (GeV/e)?

Fig. 1. Charge form factor Fc(q?) Fig. 2. Quadrupole form factor Fg(q?)
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L} ! ' 1- Dipole
0.5 R 08 F 2 -VMDM i
’ 3 - RHOM
0 06 | 4 Graz 11 only, dipole |
05 04 r b
0.2 B
-1
2-VMDM 0r 1
-5 3 - RHOM 1 —oa | |
4 — Graz-1I only, dipole ’
=2 : ' -4 Sseooooo.
0 0.5 1 L5 2 0 0.5 1 1.5 2
0%, (GeV/e)? 0%, (GeV/e)?
Fig. 3. Tensor polarization Tgo(q2) calculated Fig. 4. Tensor polarization T21(q2) calculated
at §. = 70° at §. = 70°
0.2 T T T
0.15+ _
0.1F E

0.05F+
0 B -
-0.05} =2 | | L TS

—0.1+-
1 - Dipole
-0.15F 2-VMDM
021 57 8N onty. dipol T
025 — Graz-Il only, dipole .
0 0.5 1 1.5 2

0%, (GeV/e)?

Fig. 5. Tensor polarization Th2(q?) calculated at . = 70°

CONCLUSION

We made an attempt to extract information about P waves by analyzing the charge
form factor of the deuteron Fio. Why the F¢ is appropriate characteristic of the deuteron?
To receive answer to this question, we can remember that in nonrelativistic approach, to
explain properties of the Fio, one must take into account mesonic exchange currents especially
the so-called pair currents, which have the direct connections with negative-energy states in
the deuteron [8]. We could see the contribution of the negative-energy states (1 Pf, 1Pp)
by fitting F, at a certain set of parameters. We reproduced the Fo, F(, and T at over
Q? = 2 (GeV/c)? and To; at 0 < Q% < 0.7 (GeV/c)?. Furthermore, we can calculate the
form factors to fit F; or B. Of course, this consideration has qualitative character only and
the further investigation in this direction must be done.
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