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The equation of state (EOS) of nuclear matter at moderate temperature and density with various
proton fractions is considered, in particular the region of medium excitation energy given by the
temperature range T � 30 MeV and the baryon density range ρB � 1014.2 g/cm3. In addition to the
mean-ˇeld effects, the formation of few-body correlations, in particular, the light bound clusters up to
the alpha particle (1 � A � 4), is of interest. Calculation based on the relativistic mean-ˇeld theory with
the parameter set TM1 is presented. We show results for different values of the asymmetry parameter,
and β equilibrium is considered as a special case. The medium modiˇcation of the light clusters
is described by self-energy and Pauli blocking effects, using an effective nucleonÄnucleon interaction
potential.

� ¸¸³ É·¨¢ ¥É¸Ö Ê· ¢´¥´¨¥ ¸µ¸ÉµÖ´¨Ö Ö¤¥·´µ° ³ É¥·¨¨ ¶·¨ ¸·¥¤´¨Ì É¥³¶¥· ÉÊ·¥ ¨ ¶²µÉ´µ¸É¨
¸ · §²¨Î´Ò³ ¸µ¤¥·¦ ´¨¥³ ¶·µÉµ´µ¢, ¢ Î ¸É´µ¸É¨ ¢ µ¡² ¸É¨ ¶·µ³¥¦ÊÉµÎ´µ° Ô´¥·£¨¨ ¢µ§¡Ê¦¤¥´¨Ö
T � 30 ŒÔ‚ ¨ ¡ ·¨µ´´µ° ¶²µÉ´µ¸É¨ ¢ ¤¨ ¶ §µ´¥ ρB � 1014,2 £/¸³3. ‚ ¤µ¶µ²´¥´¨¥ ± ÔËË¥±É ³
¸·¥¤´¥£µ ¶µ²Ö ¶·¥¤¸É ¢²Ö¥É ¨´É¥·¥¸ µ¡· §µ¢ ´¨¥ ³´µ£µÎ ¸É¨Î´ÒÌ ±µ··¥²ÖÍ¨°, ¢ Î ¸É´µ¸É¨ ²¥£±¨Ì
¸¢Ö§ ´´ÒÌ ±² ¸É¥·µ¢ ¢¶²µÉÓ ¤µ  ²ÓË -Î ¸É¨Í (1 � A � 4). �·¥¤¸É ¢²¥´ · ¸Î¥É, µ¸´µ¢Ò¢ ÕÐ¨°¸Ö
´  ·¥²ÖÉ¨¢¨¸É¸±µ° É¥µ·¨¨ ¸·¥¤´¥£µ ¶µ²Ö ¸ ´ ¡µ·µ³ ¶ · ³¥É·µ¢ TM1. „¥³µ´¸É·¨·ÊÕÉ¸Ö ·¥§Ê²Ó-
É ÉÒ ¤²Ö · §²¨Î´ÒÌ ¢¥²¨Î¨´ ¶ · ³¥É·   ¸¨³³¥É·¨¨,   β-· ¢´µ¢¥¸¨¥ · ¸¸³ É·¨¢ ¥É¸Ö ¢ ± Î¥¸É¢¥
Î ¸É´µ£µ ¸²ÊÎ Ö. �¥±µÉµ· Ö ³µ¤¨Ë¨± Í¨Ö ²¥£±¨Ì ±² ¸É¥·µ¢ µ¶¨¸Ò¢ ¥É¸Ö ¢´ÊÉ·¥´´¥° Ô´¥·£¨¥°
¨ ÔËË¥±É ³¨ ¡²µ±¨·µ¢±¨ � Ê²¨ ¸ ¨¸¶µ²Ó§µ¢ ´¨¥³ ÔËË¥±É¨¢´µ£µ ¶µÉ¥´Í¨ ²  ´Ê±²µ´-´Ê±²µ´´µ£µ
¢§ ¨³µ¤¥°¸É¢¨Ö.

INTRODUCTION

An important issue of nuclear theory is the nuclear matter equation of state (EOS), the
composition and the possible occurrence of phase transitions in nuclear matter. Experimental
data obtained from nuclei in the ground state as well as in excited states give some benchmarks
for this quantity which is also of great interest in astrophysics and cosmology. Experiments
on heavy-ion collisions, performed over the last decades, gave new insight into the behavior
of nuclear systems in a broad range of densities and temperatures. The observed cluster abun-
dances, their spectral distribution and correlations in momentum space can deliver information
about the state of dense, highly excited matter. A particularly interesting topic is the possible
existence of a new state, the quarkÄgluon phase. Matter under such extreme conditions occurs
in compact objects such as neutron stars and in supernova explosions. Furthermore, the EOS
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of hot and dense matter is needed for cosmological models like the hot Big Bang as an
essential input. References can be found in a recent monograph on the nuclear EOS [1].

We will restrict ourselves to matter in equilibrium at temperatures T � 30 MeV and baryon
number densities nB � 0.2 fm−3, where the quark substructure and the excitation of internal
degrees of freedom of the nucleons (protons p and neutrons n) are not of relevance and the
nucleonÄnucleon interaction can be represented by an effective interaction potential. In this
region of the temperatureÄdensity plane, we will investigate how the quasiparticle picture can
be improved if few-body correlations are taken into account, in particular the formation of
deuteron (d), triton (t), 3He (h), and 4He (α) clusters. The in�uence of cluster formation
on the EOS is calculated for different situations, and the occurrence of phase instabilities
is investigated. Instead of the full spectral function, the concept of composition will be
introduced as an approximation to describe correlations in dense systems. Another interesting
point is the formation of quantum condensates, in particular, pairing and quartetting.

A quantum statistical approach to the thermodynamic properties of nuclear matter can
be given using the method of thermodynamic Green functions [2]. In general, within the
grand canonical ensemble, the EOS n(T, µ) relating the particle number density n to the
chemical potential µ is obtained from the single-particle spectral function, which can be
expressed in terms of the self-energy. Then, thermodynamic potentials such as the pressure

p(T, µ) =
∫ µ

−∞
n(T, µ′)dµ′ or the density of free energy f(T, n) =

∫ n

0

µ(T, n′)dn′ are

obtained by integration.
Within a Green function approach, the main quantity to be evaluated is the self-energy.

Different approximations can be obtained by partial summation within a diagram represen-
tation. The formation of bound states is taken into account considering ladder approxima-
tions [3], leading in the low-density limit to the solution of the Schréodinger equation. The
effects of the medium can be included in a self-consistent way within the cluster mean-ˇeld
approximation (see [4] for references), where the in�uence of the correlated medium on the
single-particle states as well as on the clusters is considered in the ˇrst order with respect
to the interaction. As a point of signiˇcance, the single-particle and the bound states are
considered on equal footing. Besides single-particle self-energy shifts of the constituents, the
bound-state energies are also modiˇed by the Pauli blocking due to the correlated medium.
An extended discussion of the two-particle problem can be found in [5]. We will also consider
the medium modiˇcation of the three- and four-particle bound states (see [6]).

If a singularity in the medium-modiˇed few-body T matrix is obtained, it may be taken to
indicate the formation of a quantum condensates. Different kinds of quantum condensates are
also considered [7,8]. They become obvious if the binding energy of nuclei is investigated [9].
Correlated condensates are found to give a reasonable description of near-threshold states of
nα nuclei [10]. The contribution of condensation energy to the nuclear matter EOS would be
of importance and has to be taken into account not only in mean-ˇeld approximation but also
considering correlated condensates.

The relativistic EOS of nuclear matter for supernova explosions was investigated recently
[11]. To include bound states such as α particles, medium modiˇcations of the few-body
states have to be taken into account. Simple concepts used there such as the excluded volume
should be replaced by more rigorous treatments based on a systematic many-particle approach.
We will report on results including two-particle correlations into the nuclear matter EOS. New
results of calculating the effects of three- and four-particle correlations are presented.
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1. IDEAL MIXTURE OF DIFFERENT COMPONENTS

In the simplest approximation, we consider an ideal quantum gas of elementary particles
such as protons, neutrons, electrons and possibly neutrinos (the quarkÄgluon substructure
will not be considered at densities and temperatures considered). Inclusion of strong, weak,
electromagnetic, and gravitational interactions leads to changes in the relevant degrees of
freedom and to modiˇcation of the EOS, possibly connected with phase transitions. In this
way, we ˇrst discuss the formation of correlations between the nucleons at a given proton
fraction. As the next step, β equilibrium is considered, so that only the baryon density
as a conserved quantity is prescribed. Then electric charge neutrality also ˇxes the electron
concentration, but will not be discussed here in detail as well as equilibrium in the gravitational
ˇeld.

In the low-density limit, the most important effect of interaction with respect to the nuclear
matter EOS is the formation of bound states characterized by the proton content Zi and the
neutron content Ni. We will restrict ourselves only to the light clusters with A � 4 since the α
particle is strongly bound. Large strongly bound clusters such as iron can be described using
other concepts such as the formation of another (liquid) phase in the matter, see, e.g., [11].
The occurrence of large nuclei is of importance in considering the outer crust of neutron stars.

In thermal equilibrium, within a quantum statistical approach a mass action law can be
derived (see [12]). The densities of the different components are determined by the chemical
potentials µp and µn and temperature T . The densities of the free protons and neutrons as
well as of the bound states follow in the nonrelativistic case as

ni =
2σi + 1

2 π2

∫ ∞

0

dk k2 1
exp [(Ei(k; T, µp, µn) − Ziµp − Niµn) /T ]− (−1)Zi+Ni

, (1)

where for deuterons σd = 1, for tritons σt = 1/2, for helions σh = 1/2, and for α particles
σα = 0. In the low-density limit where the medium effects can be neglected, the energies
Ei(k; T, µp, µn) = mi + k2/(2mi) can be used, where mi = Zimp + Nimn + Eb

i and the
binding energies Eb

i are given in the Table.

Properties of light clusters

Binding energy, MeV Mass, MeV/c2 Spin rms radius, fm

n 0 939.565 1/2 0.34
p 0 938.783 1/2 0.87
d Ä2.225 1876.12 1 2.17
t Ä8.482 2809.43 1/2 1.70
h Ä7.718 2809.41 1/2 1.87
α Ä28.3 3728.40 0 1.63

We deˇne the abundances of the different constituents as Xn = nn/nB, Xp = np/nB,
Xd = 2 nd/nB, Xt = 3 nt/nB , Xh = 3 nh/nB, and Xα = 4 nα/nB , where nB = nn +
np + 2 nd + 3 nt + 3 nh + 4 nα is the total baryon density. Furthermore we introduce the total
proton fraction as Y tot

p = (np + nd + nt + 2 nh + 2 nα)/nB. Results for the composition
of nuclear matter at temperature T = 10 MeV with proton fraction Y tot

p = 0.2 are shown in
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Fig. 1; for symmetric matter Y tot
p = 0.5, in Fig. 2. The model of an ideal mixture of free

nucleons and clusters applies to the low-density limit. At higher baryon density, medium
effects are relevant to calculate the composition shown in Figs. 1, 2, which are described in
the following sections.

Fig. 1. Composition of nuclear matter with proton

fraction 0.2 as a function of the baryon density,
T = 10 MeV

Fig. 2. Composition of nuclear matter with proton
fraction 0.5 as a function of the baryon density,

T = 10 MeV

Up to densities of about 0.001 fm−3, density effects can be neglected. In this way
we describe an ideal mixture in chemical equilibrium. The composition as well as the
thermodynamical functions can be calculated immediately by solving the equations given
above. Also the β equilibrium can be calculated describing the chemical equilibrium with
respect to the weak decay n � p + e + ν̄e, where one usually neglects the chemical potential
of the neutrinos. For the electron chemical potential the relativistic ideal fermion gas model
is used. Neglecting the formation of clusters, the corresponding results for the proton fraction
as well as the thermodynamical functions are well known from the literature, see Refs. [1,13],
where at higher densities a quasiparticle picture is introduced. They are used to describe
nuclear matter in β equilibrium to calculate the structure of neutron stars. There is an
additional relation between the chemical potentials of the proton, neutron, and electron as
well as the charge neutrality condition so that ne = Y tot

p nB .
Also the calculation of nuclear matter in β equilibrium is improved by taking the formation

of light clusters into account. The calculations within the model of an ideal mixture of different
components is straightforward and will not be given here. At higher densities, also the medium
effects have to be taken into account as discussed below. Notice that for the present purpose
we only use empirical values without specifying the underlying nucleonÄnucleon interaction.

2. RELATIVISTIC MEAN-FIELD THEORY

A description of nuclear matter as an ideal mixture of protons and neutrons, possibly in
β equilibrium with electrons and neutrinos, is not sufˇcient to give a realistic description of
dense matter. The account of the interaction between the nucleons can be performed in dif-
ferent ways. For instance, we have effective nucleonÄnucleon interactions, which reproduce
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empirical two-nucleon data, e.g. the PARIS and the BONN potential. On the other hand, we
have effective interactions like the Skyrme interaction, which are able to reproduce nuclear
data within the mean-ˇeld approximation. The most advanced description is given by the
Walecka model, which is based on a relativistic Lagrangian and models the nucleonÄnucleon
interactions by coupling to effective meson ˇelds. Within the relativistic mean-ˇeld approxi-
mation, quasiparticles are introduced, which can be parameterized by a self-energy shift and
an effective mass.

We will use the so-called TM1 model which is given by the following Lagrangian,
describing coupling of the nucleon ˇeld to the nonlinear sigma, omega and rho meson ˇelds
(index i = p, n denotes protons or neutrons),

L = ψ̄i[iγµ∂µ−mi−gσσ−gωγµωµ−gργµτaρµ
a ]ψi+

1
2
∂µσ∂µσ−1

2
m2

σσ2−1
3
g2σ

3−1
4
g3σ

4−

− 1
4
WµνWµν +

1
2
m2

ωωµωµ +
1
4
c3(ωµωµ)2 − 1

4
Ra

µνRaµν +
1
2
m2

ρρ
a
µρµ

a . (2)

The TM1 parameterization is given in Ref. [11].
For further details with respect to notation and the derivation of the corresponding EulerÄ

Lagrange equations we refer to [11]. By replacing the meson ˇelds by their expectation
values one obtains an effective Dirac equation for the nucleons, which gives

m∗
i = mi + gσ σ0,

Ep(k; T, µp, µn) =
√

k2 + m∗
p
2 + gω ω0 + gρ ρ0, (3)

En(k; T, µp, µn) =
√

k2 + m∗
n

2 + gω ω0 − gρ ρ0

as the expressions for the effective nucleon mass and the corresponding proton and neutron
energies, respectively.

For a temperature T and chemical potentials µi (relative to the nucleon masses), the
nucleon occupation probability reads

fi(k) =
1

1 + exp [(Ei(k; T, µp, µn) − µi) /T ]
. (4)

The antinucleon distribution functions followed by changing the sign of the effective chemical
potential [11]. Since we are interested in the low-density region, the contribution of the
antinucleons can be neglected. Then, in the mean-ˇeld approximation the chemical potential
is related to the nucleon number density according to

ni =
1
π2

∫ ∞

0

dk k2 1
exp [(Ei(k; T, µp, µn) − µi) /T ] + 1

. (5)

The meson ˇelds σ0, ω0, and ρ0 are found by solving a set of equations self-consistently
as shown in [11]. Also expressions for the energy density, pressure and the entropy density
can be found there. The empirical values of the binding energy of nuclear matter and nuclear
matter density are reproduced using the above-mentioned parameterization. The nuclear matter
EOS can be found expressing the chemical potentials as functions of temperature, baryon
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density and asymmetry. Within this relativistic mean-ˇeld approach the chemical potential
as a function of density, temperature and the asymmetry parameter can be calculated. In
particular, for symmetric matter an instability region is obtained below a critical temperature
Tc, where a Maxwell construction has to be applied.

3. MEDIUM MODIFICATIONS OF TWO-PARTICLE CORRELATIONS

Expressions for the medium modiˇcations of the cluster distribution functions can be
derived in a quantum statistical approach to the few-body states, starting from a Hamil-
tonian describing the nucleonÄnucleon interaction by the potential V (12, 1′2′) (1 denoting
momentum, spin and isospin). We ˇrst discuss the two-particle correlations, which have
been considered extensively in the literature [5, 7]. Results for different quantities such as
the spectral function, the deuteron binding energy, and wave function as well as the two-
nucleon scattering phase shifts in the isospin singlet and triplet channel have been evaluated
for different temperatures and densities. The composition as well as the phase instability was
calculated.

The account of two-particle correlations in nuclear matter can be performed considering
the two-particle Green function in ladder approximation. The solution of the corresponding
BetheÄSalpeter equation taking into account mean-ˇeld and Pauli blocking terms is equivalent
to the solution of the wave equation

[
EMF(1) + EMF(2) − EnP

]
ψnP (12)+

+ [1 − f1(1) − f1(2)]
∑
1′2′

V (12, 1′2′) ψnP (1′2′) = 0, (6)

EMF(1) = p2
1/2m +

∑
2 V (12, 12)exf1(2) are the HartreeÄFock single-particle energies;

f1(1) = {exp [EMF(1)/T − µ1/T ] + 1}−1. From the solution of this in-medium two-particle
Schréodinger equation or the corresponding T matrix the scattering and possibly bound states
are obtained. Due to the self-energy shifts and the Pauli blocking, the binding energy of
deuteron Ed(P, T, µp, µn) as well as the scattering phase shifts δτ2(E, P, T, µp, µn) in the
isospin singlet or triplet channel τ2, respectively, will depend on the temperature and the
chemical potentials. For a separable interaction V (12, 1′2′) like the PEST4 potential [14], an
analytical solution of Eq. (6) can be found in the low-density limit, and the results for the
shift of the binding energy and the medium modiˇcation of the scattering phase shifts are
discussed extensively, see [5, 7]. We will discuss the medium shift of the binding energy in
perturbation theory.

An important phenomenon is the Mott effect. At a given temperature T and total momen-
tum P , the binding energy of the deuteron bound state vanishes at the density nMott

d (P, T )
due to the Pauli blocking. As a consequence, the virial expansion of the EOS (generalized
BetheÄUhlenbeck formula)

nB(T, µp, µn) = n1(T, µp, µn) + n2(T, µp, µn) (7)

constitutes the single-particle contributions n1 = nf
p + nf

n, where nf
τ (T, µτ ) = 2/(2π�)3×∫

d3pfτ (Eτ (p)) describes the free-quasiparticle contributions of protons (τ = p) or neutrons
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(τ = n), respectively, and the two-particle contributions n2 = nbound
2 + nscat

2 containing the
contribution of deuterons (spin factor 3)

nbound
2 (T, µp, µn) = 3

∫
P>PMott

d3P

(2π�)3
fd(Ed) (8)

with fd(Ed) = [exp (Ed(P, T, µp, µn)/T − µp/T − µn/T ) − 1]−1, and scattering states of
the isospin singlet and triplet channel τ2 (degeneration factor γτ2)

nscat
2 (T, µp, µn) =

∑
τ2

γτ2

∫
d3P

(2π�)3

∫ ∞

0

dE

2π
fτ2(∆ESE

d (P ) + E) sin2 δτ2

d

dE
δτ2 , (9)

∆ESE
d (P ) is the shift of the continuum edge (self-energies at momentum P/2).
The EOS (7) shows some interesting features: (i) In the low-density limit, a mass action

law is obtained describing an ideal mixture of free nucleons and deuterons. We stress that a
quasiparticle picture is not able to reproduce this important limiting case correctly. (ii) With
increasing density, the single-particle properties as well as the two-particle properties are
simultaneously modiˇed by the medium. In particular, the bound states are dissolved at high
densities. (iii) There is also a contribution from scattering states to the two-particle density.
As a consequence of the Levinson theorem, the contribution of the disappearing bound states
is replaced by a contribution from the scattering states (resonances) at the Mott density so
that the total two-particle density n2 behaves smoothly. (iv) Due to the pole of the Bose
distribution function at low temperatures, pairing can occur in n2. A smooth transition from
BoseÄEinstein condensation of deuterons at low densities to Cooper pairing at high densities
is observed [7].

Calculations of the composition (n2/nB) of symmetric nuclear matter (np = nn, no
Coulomb interaction) are shown in Ref. [7]. At low densities, the contribution of bound
states becomes dominant at low temperatures. At ˇxed temperature, the contribution of the
correlated density n2 is ˇrst increasing with increasing density according to the mass action
law, but above the Mott line it is sharply decreasing, so that near nuclear matter density
(nB = ntot = 0.17 fm−3) the contribution of the correlated density almost vanishes. Also,
the critical temperature for the pairing transition is shown there.

For a given temperature T = 10 MeV, the composition with respect to the two-particle
correlation is shown as a function of the baryon density in [5], where it is shown that
the correlated density contains the contribution of bound states as well as the contribution
of scattering states. Above the so-called Mott density, where the bound states begin to
disappear, according to the Levinson theorem, the continuous behavior of the correlated
density is produced by the scattering states.

Since we perform only an exploratory calculation with respect to the density modiˇcation,
instead of highly sophisticated parameterization of the interaction such as the PARIS and
BONN potential we will use a simple, separable Yamaguchi interaction

〈k, K|V |k′, K ′〉 = V (k, k′) δK,K′ ,

V (k, k′) =
∑
i=s,t

λiw(k)w(k′), w(k) =
1

k2 + β2
.

(10)
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The set of parameters β = 1.4488 fm−1, λs = 4263.05 MeV · fm−1 and λt =
2550.03 MeV · fm−1 is chosen in order to reproduce the binding energy of the deuteron
as well as of the alpha particle. The further properties, such as the wave functions, are
assumed to be reasonable approximations in evaluating the density effects.

From these considerations we see that at high densities the clusters are dissolved and
should be described as weakly interacting quasiparticles. To give an optimal description of
the quasiparticle energies, instead of using the HartreeÄFock approximation of the Yamaguchi
model, we will adopt the well established Walecka model. In this way the self-energy effects
are consistently described for the free and bound states. Since the Pauli blocking terms cannot
be evaluated using the Walecka model, these expressions are computed using the Yamaguchi
model. It should be stressed that in the density region where clusters are relevant both
interaction models give self-energies and effective masses which are in reasonable agreement.
So the mixing of these two interaction models is not contradictionary.

Thus, we take the quasiparticle energies which are described by an effective mass and a
self-energy shift and solve the Schréodinger equation for the separable Yamaguchi potential.
Separating the centre-of-mass motion with energy p2/2 M∗

d from the relative motion with

reduced mass M∗
p M∗

n/(M∗
p + M∗

n), we ˇnd the binding energy Equasi
d , which is density-

dependent due to the effective masses. The corresponding wave function is used to evaluate
the Pauli blocking term

∆EPauli
d =

∑
1 2 1′ 2′

ψ(1 2)V (1 2, 1′ 2′) [f(1) + f(2)] ψ∗(1′ 2′) (11)

in the ˇrst-order perturbation theory. The self-energy shift ∆ESE
d is obtained simply by the

sum of the quasiparticle self-energy shift of the proton and neutron, obtained by the Walecka
model.

Within our exploratory calculation we use a simpliˇed description of the contribution of
correlated states, considering only the bound state with an effective shift, which reproduces
the correlated density. This shift is taken as a quadratic function in the densities, where the
linear term is calculated from perturbation theory and the quadratic term is ˇtted to reproduce
the results for the composition as found by the full microscopic calculation including the
contribution of scattering states.

With the deuteron wave function, the contribution of the single-particle self-energy shift to
the shift of the binding energies of clusters is evaluated using the quasiparticle shifts derived
within the Walecka model. This ensures that the nucleons are described consistently also
above the Mott density where the bound state merges in the continuum of scattering states.
For the Pauli blocking term we evaluate the average over the interaction potential, multiplied
with the distribution function.

In the low-density limit, perturbation theory gives Ed = E0
d +P 2/2Md+∆ESE

d +∆EPauli
d

with E0
d = −2.22 MeV, and

∆EPauli
d =

∑
12,1′2′

ψd,P (12)[f1(1) + f1(2)]V (12, 1′2′)ψd,P (1′2′) ≈

≈ ψ2
d,P (0)(np + nn)(E0

d − Ekin
d ), (12)

where Ekin
d denotes the mean kinetic energy for the unperturbed deuteron. To reproduce the
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behavior shown in Fig. 2, we adopt the following parameterization:

∆Ed ≈ 340(np + nn) MeV · fm3 + 13000(n2
p + n2

n) MeV · fm6. (13)

The result of this calculation is also shown in Fig. 2 to be compared with the evaluation
of the correlated density in [5]. Two-particle correlations are suppressed for densities higher
than the Mott density of about 0.001 fm−3, but survive to densities of the order of nuclear
matter density.

4. MEDIUM MODIFICATION OF HIGHER CLUSTERS

The modiˇcation of the three- and four-particle system due to the medium can be con-
sidered in the cluster mean-ˇeld approximation. Describing the medium in quasiparticle ap-
proximation, a medium-modiˇed Faddeev equation can be derived which was already solved
for the case of three-particle bound states in [6] as well as for the case of four-particle bound
states in [6, 8]. Similar to the two-particle case, due to the Pauli blocking the bound state
disappears at a given temperature and total momentum at the corresponding Mott density.

For our exploratory calculation we use Gaussian-type wave functions to ˇnd optimal bound
states in the three- and four-particle case. Then we are able to calculate the perturbative
expression for the shift of the bound-state energy and ˇnd

∆Et = 600(np + 2nn) MeV · fm3 + 3300(n2
p + 2n2

n) MeV · fm6, (14)

∆Eh = 600(2np + nn) MeV · fm3 + 3300(2n2
p + n2

n) MeV · fm6, (15)

∆Eα = 709(2np + 2nn) MeV · fm3 + 6500(2n2
p + 2n2

n) MeV · fm6. (16)

Fig. 3. Baryon chemical potential as a function of

the baryon density for symmetric nuclear matter,

T = 10 MeV. With and without the formation of
light clusters

Now we can calculate the composition re-
placing the binding energies by the density-
dependent ones. Results for the composition
are shown in Figs. 1, 2. It is shown that, in
particular, α clusters are formed in symmet-
ric nuclear matter, but they are destroyed at
about nuclear matter density. In the case of
asymmetric matter, triton becomes abundant.

We conclude that not only the α particle
but also the other light clusters contribute sig-
niˇcantly to the composition. Furthermore,
they also contribute to the baryon chemical
potential and in this way the modiˇcation of
the phase instability region with respect to the
temperature, baryon density, and asymmetry
can be obtained. As an example, for symmet-
ric matter the baryon chemical potential as a
function of density for T = 10 MeV is shown in Fig. 3. We see that the instability region is
reduced if cluster formation is taken into account.
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Within the approach, given here, also the β equilibrium can be calculated and the in�uence
of the cluster formation on the proton fraction can be considered. The formation of clusters
will increase the proton fraction.

In order to get the correct physical behavior, medium modiˇcations for the clusters have
to be taken into account at high densities. A simple approach is the concept of an excluded
volume as used in [11]. Other effects such as the modiˇcation of quasiparticles forming a
bound state are not considered. For details we refer to [11]. We have also shown the result for
the composition in Fig. 2 if only α-particle formation is taken into account, using the concept
of the excluded volume. The abundance of α particles increases up to baryon densities
of about a tenth of nuclear matter density and rapidly decreases with higher densities. In
contrast, the quantum statistical approach shows a weaker decrease of the correlated density
with the baryon density. In particular, two-particle correlations are present up to nuclear
matter density. Discussing the difference in both approaches, we ˇrst note that the concept
of a hard core, which leads to the excluded volume, overestimates the Pauli blocking, which
makes the interaction potential softer. Further, in addition to the medium modiˇcation due
to the Pauli blocking, the effect of the quasiparticle self-energy shift has to be taken into
account.

5. QUANTUM CONDENSATES IN NUCLEAR MATTER

Nuclear matter is an example of a strongly coupled fermion systems, where bound states
arise. On the other hand, it is a well-known fact that interacting fermion systems can form
quantum condensates so that a super�uid state arises. It is commonly accepted that pairing
occurs not only in nuclear matter but also in ˇnite nuclei. In the low-density limit, where
even-number fermionic bound states can be considered as bosons, BoseÄEinstein condensation
is expected to occur at low temperatures. The solution of Eq. (6) with E2nP = 2µ gives
the onset of pairing, the solution of the corresponding four-particle wave equation [8] with
E4nP = 4µ gives the onset of quartetting in (symmetric) nuclear matter. An interesting topic is
the cross-over from BardeenÄCooperÄSchrieffer (BCS) pairing to BoseÄEinstein condensation
(BEC) (see [5]).

Due to the strong interaction of protons and neutrons in the deuteron channel, isospin
singlet pn pairing is favored in symmetric nuclear matter in comparison with isospin triplet
pp or nn pairing. Considering asymmetric matter with increasing difference between the
chemical potentials of protons and neutrons, isospin triplet pairing will become more favored.
As can be shown from the evaluation of condensation energy, coexisting isospin singlet and
isospin triplet condensates are not stable in symmetric matter. It is an open question how in
the ground state of nuclear matter the transition from isospin singlet pairing to isospin triplet
pairing occurs if the asymmetry parameter increases.

In the recent letter [8], it has been shown from the solution of the in-medium wave
equations (6) that in a certain region of density, pairing has to compete with quartetting. It
has been found that in low-density symmetric nuclear matter the transition to triplet pairing,
which is stronger than singlet pairing, does not occur because the quartetting transition occurs
earlier. The transition temperature to quartetting has been estimated as a function of the
chemical potential as well as of the density by using a variational calculation. Quartetting
(α-like condensate) beats the transition to triplet pairing (deuteron-like condensate) if the
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density is smaller than 0.03 fm−3. A more detailed investigation of the quartetting solution
near its break down at about 0.03 fm−3 is missing up to now.

The consequences of isospin singlet pairing and α-like quartetting on the binding energies
of nuclei has been investigated within the local density approach [9]. The Wigner energy
in N = Z nuclei was identiˇed with the formation of an isospin singlet condensate, and for
nuclei with medium atomic number A ≈ 40 this additional contribution of nuclear binding
energy is decreasing with increasing asymmetry and vanishes at N − Z ≈ 4. Exploratory
calculations for the binding energy of nuclei with Z = N show that the contribution due to
quartetting is small but may become large for small A or for nuclear matter at low density. In
particular, alpha cluster condensation has been investigated in threshold states of self-conjugate
4n nuclei [10].

CONCLUSIONS

In certain regions of the densityÄtemperature plane, a signiˇcant fraction of nuclear matter
is bound into clusters. The EOS and the region of phase instability are modiˇed. In the
case of β equilibrium, the proton fraction and the occurrence of inhomogeneous density
distribution are in�uenced in an essential way. Important consequences are also expected for
nonequilibrium processes [15].

The inclusion of both three- and four-particle correlations in nuclear matter allows one
not only to describe the abundances of t, h, α but also their in�uence on the equation of
state and phase transitions. In contrast to the mean-ˇeld treatment of the super�uid phase,
higher-order correlations will arise in the quantum condensate.
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