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The Hagedorn resonance gas model is generalized in order to include a medium-dependent resonance
width. It is shown that a model with a vanishing width below the Hagedorn temperature TH and a
Hagedorn spectrum-like width above TH not only eliminates the divergence of the thermodynamic
functions above TH , but also gives a satisfactory description of lattice quantum chromodynamics (QCD)
data above the deconˇnement transition. In addition, this model explains the absence of heavy-resonance
contributions in the ˇt of experimental particle ratios at SPS and RHIC energies.

�·µ¨§¢µ¤¨É¸Ö µ¡µ¡Ð¥´¨¥ ³µ¤¥²¨ ·¥§µ´ ´¸´µ£µ £ §  • £¥¤µ·´  É ±, ÎÉµ¡Ò ÊÎ¥¸ÉÓ § ¢¨¸ÖÐÊÕ
µÉ ¸·¥¤Ò Ï¨·¨´Ê ·¥§µ´ ´¸ . �µ± § ´µ, ÎÉµ ³µ¤¥²Ó ¸ Ï¨·¨´µ°, ¨¸Î¥§ ÕÐ¥° ´¨¦¥ É¥³¶¥· ÉÊ·Ò
• £¥¤µ·´  TH ¨ ¨³¥ÕÐ¥° Ì £¥¤µ·´-¶µ¤µ¡´Ò° ¸¶¥±É· ¢ÒÏ¥ TH , ´¥ Éµ²Ó±µ Ê¸É· ´Ö¥É · ¸Ìµ¤¨³µ¸ÉÓ
É¥·³µ¤¨´ ³¨Î¥¸±¨Ì ËÊ´±Í¨° ¢ÒÏ¥ TH , ´µ ¨ ¤ ¥É Ê¤µ¢²¥É¢µ·¨É¥²Ó´µ¥ µ¶¨¸ ´¨¥ ¤ ´´ÒÌ ·¥Ï¥ÉµÎ-
´µ° ±¢ ´Éµ¢µ° Ì·µ³µ¤¨´ ³¨±¨ (Š•„) ¢ÒÏ¥ ¶¥·¥Ìµ¤  ¤¥±µ´Ë °´³¥´É . Š·µ³¥ Éµ£µ, ÔÉ  ³µ¤¥²Ó
µ¡ÑÖ¸´Ö¥É µÉ¸ÊÉ¸É¢¨¥ ¢±² ¤µ¢ ÉÖ¦¥²ÒÌ ·¥§µ´ ´¸µ¢ ¢ Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¸µµÉ´µÏ¥´¨ÖÌ ¤²Ö Î ¸É¨Í
¶·¨ Ô´¥·£¨ÖÌ SPS ¨ RHIC.

1. The lattice QCD simulations not only provide the strongest theoretical support of the
quarkÄgluon plasma (QGP) existence, but they also give detailed information on the properties
of strongly interacting matter over a wide range of temperatures. A recent analysis [1] of the
lattice energy density showed that a resonance gas model can perfectly explain the steep rise
in the number of degrees of freedom at T ≈ Tc. On the other hand, lattice QCD has also
revealed that hadronic correlations persist for T > Tc [2]. The question arises whether it is
more appropriate to describe hot QCD matter in terms of hadronic correlations rather than in
terms of quarks and gluons. Therefore, in the present contribution, we would like to discuss
a generalization of the Hagedorn resonance gas (statistical bootstrap) model which allows for
the extension of a hadronic description above Tc.

The statistical bootstrap model (SBM) [3] is based on the hypothesis that hadrons are
made of hadrons, with constituent and compound hadrons being treated on the same foot-
ing. This implies an exponentially growing form of the hadronic mass spectrum ρH(m) ≈
CHm−a exp [m/TH ] for m → ∞. The parameter TH , the Hagedorn temperature, was inter-
preted as a limiting temperature reached at inˇnite energy density. The extensive investigation
of the SBM has led to a formulation of both the important physical ideas and the mathematical
methods for modern statistical mechanics of strongly interacting matter [4].

However, up to now the formulation of the SBM had some severe problems. The ˇrst
one is the absence of a width for the heavy resonances. From the Particle Data Group [5]
we know that heavy resonances with masses m � 3.5 GeV may have widths comparable to
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their masses. Taking the widths into account will effectively reduce the statistical weight of
the resonance.

The second problem arises while discussing the results of the hadron gas (HG) model [6,7].
The HG model accounts for all strong decays of resonances according their partial width given
in [5], and, hence, it describes remarkably well the light hadron multiplicities measured in
nucleusÄnucleus collisions at CERN SPS [6] and BNL RHIC [7] energies. This model is
nothing else than the SBM of light hadrons which accounts for the proper volume of hadrons
with masses below 2.5 GeV, but neglects the contribution of the exponentially growing mass
spectrum.

Thus, one immediately faces a severe problem: ®Why do the heavy resonances with
masses above 2.5 GeV predicted by the SBM not contribute to the particle spectra measured
in heavy-ion collisions at SPS and RHIC energies?¯ Note that the absence of heavy-resonance
contributions in the particle ratios cannot be due to the statistical suppression of the Hagedorn
mass spectrum because the latter should not be strong in the quarkÄhadron phase transition
region, where those ratios are believed to be formed [6,7].

2. According to QCD, hadrons are not elementary, pointlike objects but rather color singlet
bound states of quarks and gluons with a ˇnite spatial extension of their wave function.
While at low densities a hadron gas description can be sufˇcient, at high densities and
temperatures, when hadronic wave functions overlap, nonvanishing quark exchange matrix
elements between hadrons occur in order to fulˇl the Pauli principle. This leads to a MottÄ
Anderson type delocalization transition with frequent rearrangement processes of color strings
(string-�ip [8]) so that hadronic resonances become off-shell with a ˇnite, medium-dependent
width. Such a Mott transition has been thoroughly discussed for light hadron systems in [9]
and has been named soft deconˇnement. The Mott transition for heavy mesons may serve as
the physical mechanism behind the anomalous J/ψ suppression phenomenon [10].

We introduce a resonance width Γ in the statistical model with the Hagedorn mass spectrum
through the spectral function A(s, m) = NsΓ m/[(s − m2)2 + Γ2 m2], a BreitÄWigner type
attenuation of virtual mass with a maximum at

√
s = m and a normalization factor

Ns =
∫ ∞

m2
B

ds A(s, m) =
[
π

2
+ arctan

(
m2 − m2

B

Γm

)]−1

.
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with the degeneracy gA and the baryonic chemical potential µA of hadron A. For mesons,
δM = −1, µM = 0 and for baryons δB = 1 and µB = µ, respectively. According to Eq. (1)
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the energy density of hadrons consists of the contribution of light hadrons for mi < mA and
the contribution of the Hagedorn mass spectrum ρH(m) for m � mA.

A new element of Eq. (1) in comparison to the SBM is the presence of the
√

s-dependent
spectral function. The analysis shows that, depending on the behavior of the resonance width
Γ in the limit m → ∞, there are the following possibilities:

I. For vanishing resonance width, Γ = 0, Eq. (1) evidently recovers the usual SBM.
II. For ˇnal values of the resonance width, Γ = const, Eq. (1) diverges for all tem-

peratures T because, in contrast to the SBM, the statistical factor in Eq. (1) behaves as
{exp [(mB − µA)/T ] + δA}−1 so that it cannot suppress the exponential divergence of the
Hagedorn mass spectrum ρH(m).

III. For a resonance width growing with mass like the Hagedorn spectrum Γ ∼
∼ CΓ exp [m/TH ] or faster, Eq. (1) converges again.

Indeed, in the latter case the BreitÄWigner spectral function behaves as

Ns
Γm

(s − m2)2 + Γ2m2

∣∣∣∣
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→ 2
π Γ

∼ exp
(
− m

TH

)
(2)

and cancels the exponential divergence of the Hagedorn mass spectrum. Hence, the energy
density remains ˇnite. Note that both the analytical properties of model (1) and the right-hand
side of Eq. (2) remain the same, if a Gaussian shape of the spectral function is chosen instead
of the BreitÄWigner one.

It can be shown that the behavior of the width at ˇnite resonance masses is not essential
for the convergence of the energy density (1). In other words, for a convergent energy
density (1) above TH it is sufˇcient to have a very small probability density (2) (or smaller)
for a resonance of mass m to be found in the state with the virtual mass

√
s. Since there

is no principal difference between the high and low mass resonances, we can use the same
functional dependence of the width Γ for all masses. Thus, for the following model ansatz:

Γ(T ) =


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(
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(
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)NT
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)
, for T > TH ,

(3)

the energy density (1) is ˇnite for all temperatures and the divergence of the SBM is removed.
At T = TH , depending on choice of parameters, either it may have a discontinuity or its
partial T derivative may be discontinuous. As discussed above, for T � TH such a model
corresponds to the usual SBM, but for high temperatures T > TH it remains ˇnite for a wide
choice of powers Nm.

Note that for heavy resonances having the widths (3) the resulting mass distribution will
be a power law which is seen both in hadronÄhadron reactions [11] and in nucleusÄnucleus
reactions [12] at high energies.

3. As one can see from ˇgure, the Hagedorn gas model correctly reproduces the lattice
QCD results below the critical temperature Tc and just in a vicinity above Tc, but not for large
temperatures. Figure shows a comparison of the same lattice QCD data [1] with the MottÄ
Hagedorn gas (3) where the parameters of the spectral function are NT = 2.325, Nm = 2.5
and TH = 165 MeV and mA = mB = 1 GeV. The successful description of the lattice energy
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density [1] indicates that above Tc the strongly interacting matter may be well described in
terms of strongly correlated hadronic degrees of freedom. This result is based on the concept
of soft deconˇnement and provides an alternative to the conventional explanation of the
deconˇnement transition as the emergence of quasi-free quarks and gluons.

Fit of the lattice QCD data [1] (dots) with the MottÄHagedorn resonance gas model (3) (solid curve).

For details see text

Another interesting feature of the model (3) is that it allows one to explain naturally the
absence of heavy-resonance contributions to the particle yields measured at highest SPS and
all RHIC energies, where QGP conditions are expected [6, 7]. In order to ˇnd out whether
a given resonance has a chance to survive till the freeze-out, it is necessary to compare its
lifetime with the typical timescale in the system. There are two typical timescales usually
discussed in nucleusÄnucleus collisions, the equilibration time τeq and the formation time τf .
The equilibration time indicates when the matter created in collision process reaches a ther-
mal equilibrium which allows one to use the hydrodynamic and thermodynamic descriptions.
For Au + Au collisions at RHIC energies it was estimated to be about τeq ≈ 0.5 fm [13].
On the other hand, in transport calculations the formation time is used: the time for con-
stituent quarks to form a hadron. The formation time depends on the momentum and energy
of the created hadron, but is of the same order τf ≈ 1−2 fm [14] as the equilibration
time.

Since within our model the QGP is equivalent to a resonance gas with medium-dependent
widths, all hadronic resonances with lifetime Γ−1(m) shorter than max {τf , τeq} will have
no chance to be formed in the system. Therefore, the upper limit of the integrals over the
resonance mass m and over the virtual mass

√
s in Eq. (1) should be reduced to a resonance

mass deˇned by

Γ(m)−1 = max {τf , τeq}. (4)

This reduction may essentially weaken the energy density gap at the transition temperature
or even make it vanish. Thus, the explicit time dependence should be introduced into the
resonance width model (1) while applying it to nuclear collisions, and this ˇnite time (size)



Thermodynamics of Resonances with Finite Width 73

effect, as we discussed, may change essentially the thermodynamics of the hadron resonances
formed in the nucleusÄnucleus collisions.

4. The statistical bootstrap model allows one to interpret the QGP as the hadron reso-
nance gas dominated by the state of inˇnite mass (and inˇnite volume). As we show, it is
necessary to include the resonance width in the SBM in order to avoid the contradiction with
experimental data on hadron spectroscopy. We found that the simple model (1)Ä(3) may not
only eliminate the divergence of the thermodynamic functions above TH , but it is also able to
successfully describe the lattice QCD data [1] for energy density. Such a model also explains
the absence of heavy-resonance contributions in the ˇt of the experimentally measured particle
ratios at SPS and RHIC energies.

However, such a modiˇcation of the SBM requires an essential change in our view on
QGP: it is conceivable that hadrons of very large masses which should be associated with a
QGP cannot be formed in nucleusÄnucleus collisions because of their very short lifetime.

It is also necessary to mention that the presented model should be applied to experimental
data with care: it can be successfully applied to describe either the quantities associated with
the chemical freeze-out, i.e. particle ratios, or spectra of Ω hyperons, φ, J/ψ and ψ′ mesons
that are freezing out at hadronization [15Ä18]. But as discussed in Refs. [19Ä21], the model
presented here should not be used for the post freeze-out momentum spectra of other hadrons
produced in the nucleusÄnucleus collisions. Perhaps only such weakly interacting hadrons as
Ω, φ, J/ψ and ψ′ will allow us to test the model presented here.
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