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We calculate the amplitudes and the cross sections of the charm dissociation processes J/ψ + π →
DD̄, D∗D̄ (D̄∗D), D∗D̄∗ within a relativistic constituent quark model. We consistently account for the
contributions from both the box and triangle diagrams to the dissociation processes. The cross section
is dominated by the D∗D̄ and D∗D̄∗ channels. By summing up the four channels, we ˇnd a maximum
total cross section of about 2.3 mb at

√
s ≈ 4.1 GeV. We compare our results to the results of other

model calculations.

�·µ¨§¢µ¤¨É¸Ö · ¸Î¥É  ³¶²¨ÉÊ¤ ¨ ¸¥Î¥´¨° ¶·µÍ¥¸¸µ¢ · ¸¶ ¤  Î ·³  J/ψ + π → DD̄,
D∗D̄ (D̄∗D), D∗D̄∗ ¢ · ³± Ì ·¥²ÖÉ¨¢¨¸É¸±µ° ³µ¤¥²¨ ±µ´¸É¨ÉÊ¥´É´µ£µ ±¢ ·± . �µ¸²¥¤µ¢ É¥²Ó´µ
ÊÎ¨ÉÒ¢ ÕÉ¸Ö ¢±² ¤Ò ¤¨ £· ³³ ®ÖÐ¨±µ¢¯ ¨ É·¥Ê£µ²Ó´ÒÌ ¤¨ £· ³³ ¢ ¶·µÍ¥¸¸Ò · ¸¶ ¤ . ‚ ¸¥Î¥´¨¨
¤µ³¨´¨·ÊÕÉ D∗D̄- ¨ D∗D̄∗-± ´ ²Ò. �µ¸²¥ ¸Ê³³¨·µ¢ ´¨Ö Î¥ÉÒ·¥Ì ± ´ ²µ¢ µ± §Ò¢ ¥É¸Ö, ÎÉµ ¸¥-
Î¥´¨¥ ¸É ´µ¢¨É¸Ö ³ ±¸¨³ ²Ó´Ò³, µ±µ²µ 2,3 ³¡, ¶·¨

√
s ≈ 4,1 ƒÔ‚. �·¨¢µ¤¨É¸Ö ¸· ¢´¥´¨¥ ´ Ï¨Ì

·¥§Ê²ÓÉ Éµ¢ ¸ ·¥§Ê²ÓÉ É ³¨ ¤·Ê£¨Ì ³µ¤¥²Ó´ÒÌ ¢ÒÎ¨¸²¥´¨°.

The study of the J/ψ dissociation cross sections is important for the understanding of
J/ψ suppression observed in PbÄPb collisions by the NA50 collaboration at CERN-SPS
[1]. There are a number of theoretical calculations on the cc̄ + light hadron cross sections
(see, e.g., the review [2]). However, they give widely divergent results, which implies
that we are still far away from a real understanding of the scattering mechanism. The
nonrelativistic quark model has been applied in [3] and [4Ä6] for the calculation of the
dissociation process cc̄ + qq̄ → cq̄ + qc̄ cross sections. The calculated cross sections for the
reactions J/ψ +π → DD̄, D∗D̄ + D̄∗, D∗D̄∗ have the following common features: they rise
very fast from zero at threshold to a maximum value and ˇnally fall off due to the Gaussian
form of the potential. The magnitude of the maximum total cross section was found to be
≈ 7 mb at

√
s ≈ 4.1 GeV in [3] and a somewhat smaller value of ≈ 1.4 mb at

√
s ≈ 3.9 GeV

in [4Ä6].
Another direction to explore the charm dissociation process has been taken in [7Ä12],

where an effective chiral SU(4) Lagrangian was employed. Such an approach looks quite
dubious for several reasons: SU(4) is badly broken, mesons are treated as pointlike particles,
some of the couplings in the Lagrangian are unknown. Nevertheless, this is a relativistic
approach which allows one to study the above processes in a systematic fashion. In this
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approach the mesons were assumed to be pointlike, resulting in very large values of the cross
sections (≈ 30 mb at

√
s ≈ 4.5 GeV) which rise with energy. By adopting rather arbitrary

damping form factors, these cross sections were signiˇcantly reduced.
It appears that the microscopic nature of hadrons is important in the charm dissociation

processes. The ˇrst step is to calculate the relevant form factors corresponding to the triple
and quartic meson vertices in the kinematical region of the dissociation reaction. QCD sum
rules have been used in Refs. [14Ä17] to evaluate those form factors and to determine the
charm cross section. It was found [17] that the cross section is about 1 mb at

√
s ≈ 4.1 with

a monotonic growth when the energy is increased.
We also mention the work of Deandrea et al. where the strong couplings J/ψD∗D∗ and

J/ψD∗D∗π were evaluated in the constituent quark model [18,19]. Finally, an extension of
the ˇnite-temperature DysonÄSchwinger equation (DSE) approach to heavy mesons and its
application to the reaction J/ψ + π → D + D̄ was considered in [20].

We employ a relativistic quark model [21] to calculate the charm dissociation amplitudes
and cross sections. This model is based on an effective Lagrangian which describes the
coupling of hadrons H to their constituent quarks. The coupling strength is determined by
the compositeness condition ZH = 0 [23], where ZH is the wave function renormalization
constant of the hadron H . One starts with an effective Lagrangian written down in terms of
quark and hadron ˇelds. Then, by using Feynman rules, the S-matrix elements describing
the hadronic interactions are given in terms of a set of quark diagrams. In particular, the
compositeness condition enables one to avoid a double counting of the hadronic degrees
of freedom. The approach is self-consistent and universally applicable. All calculations
of physical observables are straightforward. The model has only a small set of adjustable
parameters given by the values of the constituent quark masses and the scale parameters that
deˇne the size of the distribution of the constituent quarks inside a given hadron. The values
of the ˇt parameters are within the window of expectations.

The shape of the vertex functions and the quark propagators can in principle be found
from an analysis of the BetheÄSalpeter and DysonÄSchwinger equations as was done, e.g.,
in [26]. In this paper, however, we choose a phenomenological approach where the vertex
functions are modelled by a Gaussian form, the size parameter of which is determined by a
ˇt to the leptonic and radiative decays of the lowest lying charm and bottom mesons. For the
quark propagators we use the local representation.

We calculate the amplitudes and the cross sections of the charm dissociation processes

J/ψ + π → D + D̄,

J/ψ + π → D∗ + D̄ (D̄∗ + D),
J/ψ + π → D∗ + D̄∗.

These processes are described by both box and resonance diagrams which are calculated
straightforwardly in our approach. We compare our results with the results of other studies.

The coupling of a meson H(q1q̄2) to its constituent quarks q1 and q̄2 is determined by the
Lagrangian

LStr
int (x) = gHH(x)

∫
dx1

∫
dx2FH(x, x1, x2)q̄2(x2)ΓHλHq1(x1) + h.c. (1)

Here, λH and ΓH are Gell-Mann and Dirac matrices which describe the �avor and spin
quantum numbers of the meson ˇeld H(x). The function FH is related to the scalar part
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of the BetheÄSalpeter amplitude and characterizes the ˇnite size of the meson. To satisfy
translational invariance, the function FH has to fulˇl the identity FH(x+a, x1 +a, x2 +a) =
FH(x, x1, x2) for any 4-vector a. In the following we use a particular form for the vertex
function

FH(x, x1, x2) = δ(x − c1
12x1 − c2

12x2)ΦH((x1 − x2)2), (2)

where ΦH is the correlation function of two constituent quarks with masses m1, m2 and
ci
ij = mi/(mi + mj).

The coupling constant gH in Eq. (1) is determined by the so-called compositeness condition
originally proposed in [23], and extensively used in [22]. The compositeness condition
requires that the renormalization constant of the elementary meson ˇeld H(x) is set to zero:

ZH = 1 − 3g2
H

4π2
Π̃′

H(M2
H) = 0, (3)

where Π̃′
H is the derivative of the meson mass operator. In order to clarify the physical

meaning of this condition, we note that Z
1/2
H is also interpreted as the matrix element between

a physical particle state and the corresponding bare state. For ZH = 0 it then follows that the
physical state does not contain the bare one and is described as a bound state. The interaction
Lagrangian in Eq. (1) and the corresponding free Lagrangian describe both the constituents
(quarks) and the physical particles (hadrons) which are bound states of the quarks. As a
result of the interaction, the physical particle is dressed; i.e., its mass and wave function
have to be renormalized. The condition ZH = 0 also effectively excludes the constituent
degrees of freedom from the physical space and thereby guarantees that a double counting of
physical observables is avoided. The constituent quarks exist in virtual states only. One of the
corollaries of the compositeness condition is the absence of a direct interaction of the dressed
charge particle with the electromagnetic ˇeld. Taking into account both the tree-level diagram
and the diagrams with the self-energy insertions into the external legs yields a common factor
ZH which is equal to zero. We refer the interested reader to our previous papers [21,22,24]
where these points are discussed in more detail.

For the pseudoscalar and vector mesons treated in this paper, the derivatives of the mass
operators are written as

Π̃′
P (p2) =

1
2p2

pα d

pα

∫
d4k

4π2i
Φ̃2

P (−k2) tr
[
γ5S1(�k + c1

12 �p)γ5S2(�k − c2
12 �p)

]
,

Π̃′
V (p2) =

1
3

[
gµν − pµpν

p2

]
1

2p2
pα d

pα
×

×
∫

d4k

4π2i
Φ̃2

V (−k2) tr
[
γνS1(�k + c1

21 �p)γµS2(�k − c2
12 �p)

]
.

(4)

The leptonic decay constant fP is calculated from

3gP

4π2

∫
d4k

4π2i
Φ̃P (−k2) tr

[
OµS1(�k + c1

12 �p)γ5S2(�k − c2
12 �p)

]
= fP pµ.

3gV

4π2

∫
d4k

4π2i
Φ̃V (−k2) tr

[
OµS1(�k + c1

12 �p)γεV S2(�k − c2
12 �p)

]
= mV fV εµ

V ,



Charm Dissociation in a Relativistic Quark Model 85

We use free fermion propagators for the valence quarks

Si(�k) =
1

mi− �k (5)

with an effective constituent quark mass mi. As discussed in [21, 22] we assume for the
meson mass MH that

MH < m1 + m2 (6)

in order to avoid the appearance of imaginary parts in the physical amplitudes. This holds
true for the light pseudoscalar mesons but is no longer true for the light vector mesons. We
shall therefore employ identical masses for the pseudoscalar mesons and the vector mesons in
our matrix element calculations, but use physical masses in the phase space calculation. This
is quite a reliable approximation for the heavy mesons, e.g., D∗ and B∗ whose masses are
almost the same as the D and B, respectively.

The shape of the vertex functions and the quark propagators can in principle be found
from an analysis of the BetheÄSalpeter and DysonÄSchwinger equations as was done, e.g.,
in [25,26].

We choose a phenomenological approach where the vertex functions are modelled by a
Gaussian form, the size parameter of which is determined by a ˇt to the leptonic and radiative
decays of the lowest lying charm and bottom mesons. As discussed above, we use the local
representation for the quark propagators. Our previous studies [21,22] have shown that such
an approximation is successful and reliable with its application to phenomena involving the
low-lying hadrons. We employ a Gaussian for the vertex function Φ̃H(k2

E) .= exp (−k2
E/Λ2

H),
where kE is an Euclidean momentum. The size parameters Λ2

H are determined by a ˇt to
experimental data, when available, or to lattice results for the leptonic decay constants fP

where P = π, D, B. Here we improve the ˇt by using the MINUIT code in a least-square
ˇt. The values of the ˇtted parameters are displayed in Table 2, whereas the quality of the ˇt
may be seen from Table 1.

Table 1. The physical quantities used in the least-square ˇtting our parameters. The values are
taken from the PDG [28] or from lattice simulations [27]. The value of fBc is our average of QCD
sum rules calculations [13]. All numbers are given in MeV except for gπ0γγ

Quantity This model Experiment/Lattice Quantity This model Experiment/Lattice

fπ 130.7 130.7± 0.1± 0.36 gπ0γγ 0.272 GeV−1 0.273 GeV−1

fK 159.8 159.8± 1.4± 0.44 fJ/ψ 405 405± 17

fD 211
203± 14

fB 182
173± 23

226± 15 198± 30

fDs 244
230± 14

fBs 209
200± 20

250± 30 230± 30

fBc 360 360 fΥ 710 710± 37
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Table 2. The ˇt values of the model parameters

Quark masses, GeV ΛH , GeV ΛH , GeV

mu = md 0.223 Λπ 1.074 ΛBc 1.959

ms 0.356 ΛK 1.514 ΛJ/ψ 2.622

mc 1.707 ΛD = ΛDs 1.844 ΛΥ 3.965

mb 5.121 ΛB = ΛBs 1.887

Fig. 1. The Feynman diagrams describing charm dissociation processes J/ψ + π+ → D+ + D̄0,

D∗+ + D̄0, D∗+ + D̄∗ 0

In our approach the dissociation processes J/ψ+π+ → D+D̄0, D∗++D̄0 and D∗++D̄∗ 0

are described by the diagrams in Fig. 1.
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The kinematics of the processes is deˇned as

J/ψ(p1) + π+(p2) → D+
3 (q1) + D̄0

4(q2), (7)

where D+
3 = D+ or D∗+, D̄0

4 = D̄0 or D̄∗ 0, p2
1 = m2

1 ≡ m2
J/ψ, p2

2 = m2
2 ≡ m2

π,

q2
1 = m2

3 ≡ m2
D+ (m2

D∗ +), q2
2 = m2

4 ≡ m2
D̄0 (m2

D̄∗ 0).
The cross section is calculated by using the formula

σ(s) =
1

192πs

1
p2
1,cm

t+∫
t−

dt |M(s, t)|2 (8)

where M(s, t) is an invariant amplitude and

t± = (E1,cm − E3,cm)2 − (p1,cm ∓ q1,cm)2,

E1,cm =
s + m2

1 − m2
2

2
√

s
, E3,cm =

s + m2
3 − m2

4

2
√

s
,

p1,cm =
λ1/2(s, m2

1, m
2
2)

2
√

s
, q1,cm =

λ1/2(s, m2
3, m

2
4)

2
√

s
.

The reaction threshold is equal to s0 = (m3 + m4)2. Note that Eq. (8) contains the statistical
factor 1/3 which comes from averaging over the J/ψ polarizations.

Fig. 2. Calculated forms of F
(1a)
πD∗D(t)

(solid line) and F
(a)
J/ψD∗D(t) (dashed line)

in the physical region of the invariant vari-

able t which is the D∗-momentum squared

The dissociation processes are described by both
the box and the resonance diagrams as shown in
Fig. 1. The resonance diagrams depend only on t
or u variables, whereas the box diagrams are the
functions of s and t variables.

The behavior of the F
(1a)
PV P (t) and F

(a)
V V P (t) in

the kinematical region is shown in Fig. 2. In order to
be able to compare with other calculations, we quote

the value F
(1a)
PV P (t) at t = mD∗ which is equal to 22.

We cannot go on mass-shell in the corresponding

form factor F
(a)
J/ψD∗π(t) due to the presence of an

anomalous threshold.
The dependence of FV PPP (s, t) on

√
s at t = 0

is shown in Fig. 3.
The total cross section is a sum over all channels:

σtot(s) = σD+D̄0(s) + σD∗ +D̄0(s) + σD+D̄∗ 0 + σD∗ +D̄∗ 0(s). (9)

Note that σD+D̄∗ 0 = σD∗ +D̄0 . We plot σtot(s) as a function of
√

s in Fig. 4. One can see
that the maximum is about 2.3 mb at

√
s ≈ 4.1 GeV. This is close to the result obtained

in [4Ä6].
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Fig. 3. Form factor FV PPP (s, t) at t = 0 Fig. 4. The total cross section (1) with

all contributions: DD̄ (2), D∗D̄ (3),

D∗D̄∗ (4)
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