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COHERENT STATES FOR A QUANTUM PARTICLE
ON A MOBIUS STRIP!

D. J. Cirilo-Lombardo®

Joint Institute for Nuclear Research, Dubna

The coherent states for a quantum particle on a Mdbius strip are constructed and the relation with
the natural phase space for fermionic fields is shown. The explicit comparison of the obtained states
with those obtained in the previous works, where the cylindrical quantization was used and the spin 1/2
was introduced by hand, is given.

KoHcTpynpyroTcs KOrepeHTHbIE COCTOSIHUSI KB HTOBOM 4 CTHIBI H Jucte MEOuyc , U MpUBOAMUTCS
COOTHOIIEHHE ISl €CTECTBEHHOTO (P 30BOTO MPOCTP HCTB JUIsl (hepMUOHHBIX Tonel. [Ipenct BieHo cp B-
HEHHE TOyYeHHbIX COCTOSHHUI C COCTOSTHUSIMU, TIOy4YEHHBIMU B IPEIBIAYIINX P 00T X, IIe UCTIOIb3yeTcs
LWIMHIPHYECKOe KB HTOB HUE, CIHH 1/2 BBOOHUTCS BPYYHYIO.

PACS: 02.40.-k, 03.65.Ca

INTRODUCTION

Coherent States (CS) have attracted much attention in many branches of physics [1].
In spite of their importance, the theory of CS when the configuration space has nontrivial
topology is far from complete. The CS for a quantum particle on a circle [2] and a sphere have
been introduced very recently, and also the case of the torus has been treated. Although in all
these works the different CS constructions for the boson case are practically straighforward,
the simple addition by hand of spin 1/2 to the angular momentum operator .J for the femionic
case into the corresponding CS remains obscure and non-natural. The question that naturally
arises is: Is there exist any geometry for the phase space where the CS construction leads
precisely to a fermionic quantization condition? The purpose of this paper is to demonstrate
the positive answer to this question showing that the CS for a quantum particle on the Mobius
strip geometry is the natural candidate to descibe fermions exactly as the cylinder geometry
for bosons.
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1. ABSTRACT COHERENT STATES

The position of a point on the Mdbius strip geometry can be parametrized as Fy =
(X0, Y0,20) Py = (Xo+ X1,Y0 + Y1, Zo + Z1). The coordinates of Py describe the central
cylinder (generated by the invariant fiber of the middle of the strip): Zy =1, Xo = Rcos ¢,
Yy = Rsin ¢. We use the standard spherical coordinates: R, 6, with dQ = R?(d#? +
sin® @dy), and 7 is the secondary radius of the torus.

The coordinates of P; (the boundaries of the Mobius band) are the coordinates of Py plus
Zy =rcos 0, X1 = rsin 6cos ¢, Y1 = rsin 0sin ¢. The weight of the band is obviously
2r, then our space of phase is embedded into of the torus: X = Rcos ¢ + rsin 6 cos ¢,
Y = Rsin ¢ + rsin 0sin ¢, Z = [ 4+ rcos 6. The important point is that the angles are
not independent in the case of the Mdbius band and are related by the following constraint:
p=2rT

In 02rder to introduce the CS for a quantum particle on the Mdbius strip geometry, we
follow the Barut—Girardello construction and we seek the CS as the solution of the eigenvalue
equation X |£) = £|¢) with complex £ Taking R = 1 and inserting the constraint into
the parametrization of the torus, we obtain the parametrization of the band: X = cos ¢ +
rcos(p/2)cos ¢, Y =sin ¢ + rcos (¢/2)sin ¢, Z =1+ rsin (¢/2).

Taking account on the initial condition, and the transformations: X’ = e 4 X, Y’ = e~ %Y,
7' = Z, finally

€ = exp[— (1 +rsin (/2)) + ig] (1 + 7 cos (12/2)) .

Inserting the above expression into the expansion of the CS in the j basis, the CS in explicit
form is obtained:

[e'e) . 2 o0 Viiod i2 .
€)= D e T = Y e T ),
j=—00 j=—c0

where " = (I +rsin(¢/2)) — In (14 rcos(¢/2)) — ip. From the above expression, the

o0 2
fiducial vector is |[1) = Y. e~ 7 |j), then
Jj=—00
&)=Y O ). (M
j=—00

As is easily seen, the vector 1) is |0,0),_, in the (I, ¢) parametrization. This fact permits us to
rewrite expression (1) as |1, ¢) = exp {[({+rsin(p/2)) —In(1+7cos(¢/2))— iv]j}|0, 0)r—o.
The non-ortogonality formulas (overlap) are explicitly derived':

€l = X @07 e —en (e 1),

j=—00
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'The normalization as a function of ©3: (¢ |£) = O3 (iln €] | i) or ([, |l,p) = O3 (Z— | i).
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2. THE PHYSICAL PHASE SPACE AND THE NATURAL QUANTIZATION

From the expressions obtained in the previous section and J |5) = j|j) we notice that
the normalization, for the cylinder [2] (boson case) that is ¢-dependent, now depends on ¢
through I’ = (I 4 rsin (¢/2)) —In (1 + rcos(p/2)). As J|l,¢) = j|l,¥), then

(€l T 1€)
€e)

where the well-known identities for © functions were introduced. Notice the important
result coming from the above expression: the fourth condition required for the CS [3],
namely (J) = [, demands not only / to be integer or semi-integer (as the case for the circle
quantization), but also that ¢ = (2k 4 1) 7 leading a natural quantization similar as the charge
quantization in the Dirac monopole. Precisely, this condition over the angle fixes the position
of the particle in the internal or external border of the Mdobius band, that for r = 1/2 is
s = £1/2 how it is required to be.

In order to compare our case with the CS constructed in [2], we consider the existence of
the unitary operator U = e'? obeying [J,U] = U, then U |j) = |j + 1). The same average as
before for the J operator is

€Ul _1 4,92 (@' |di/m) 1,03 (' +1/2 ] 4m)

€ ¢ Tesa i ¢ T e i @

e—7r2(2n—1)

1+ ef7r2(2n71)62i7rl/) (1 + 6771'2(27171)6721'#[’) !

= 1"+ 2msin (2'm) Z (
n=1

1
where in the last equality the relation O2 (1) = exp [iw <Z’T + l/)] O3 (l/ + %) was in-

troduced. As in [2] we also can perform the relative average for the operator U in order
to eliminate the factor e~ 7, then at the first order expression (2) coincides with the unitary
circle. It is clear that the denominator in quotient (2) (average with respect to the fiducial
CS) serves to centralize the expression of the numerator. However, the claim that U is the
best candidate for the position operator is still obscure and requires a special analysis that we

will give elsewhere.

3. THE DYNAMICS

To study the dynamics in this nontrivial geometry, we construct the nonrelativistic La-
grangian and the corresponding Hamiltonian:

1. 2
H= 3 {gpQ [(1 +7cos(p/2)* — % cos go] + L(Q)} .
Now, ﬁ|E> = FE|E). If |E) = |j), imposing the fourth CS requirement [3], we have
2j2 L3
4472 2

From the dynamical expressions given above, it is not difficult to make the following
remarks:

1) the Hamiltonian is not a priori 7" invariant. The Hyg is T invariant iff 'Ly = —Lyg:

the variable conjugate to the external momenta [ changes under 7" as J is manifesting with

@ = (2k + 1)m and the expression for the energy takes the form: F =
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this symmetry the full inversion of the motion of the particle on a Mdbius strip (evidently
this is not the case of the motion of the particle on the circle);
2) the distribution of energies is Gaussian: from the Bargmann representation ¢; (£*) =

. 2
(€| E) = (¢*)™7e 7, and by using the approximate relation from the definition of the
© function!, the expression for the distribution of energies can be written as

[GIOP 1 (-
(€le) '

It is useful to remark here that, when ¢ = (2k + 1)m, I = I/, this expression coincides exactly
in form with the boson case given in [2], but now [ is semi-integer valuated.
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