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Electron cavity acceleration is one of the relativistic regimes to describe the monoenergetic electron
acceleration. In this work, we introduce a new ellipsoid model that could improve the quality of the
electron beam in contrast to other methods such as that using periodic plasma wake ˇeld, spherical
cavity regime and plasma channel-guided acceleration. The trajectory of the electron motion can be
described as hyperbola, parabola or ellipsoid path. It is in	uenced by the position and energy of the
electrons and the electrostatic potential of the cavity. We have noticed that the electron output energy
is not affected by the elongation of the transverse cavity radius in the ellipsoid regime.

“¸±μ·¥´¨¥ ¸ ¶μ³μÐÓÕ Ô²¥±É·μ´´μ£μ ·¥§μ´ Éμ·  Ö¢²Ö¥É¸Ö μ¤´¨³ ¨§ ·¥²ÖÉ¨¢¨¸É¸±¨Ì ·¥¦¨³μ¢
μ¶¨¸ ´¨Ö ³μ´μÔ´¥·£¥É¨Î¥¸±μ£μ ¶ÊÎ±  Ô²¥±É·μ´μ¢. ‚ ¶·¥¤¸É ¢²¥´´μ° · ¡μÉ¥ · ¸¸³ É·¨¢ ¥É¸Ö ³μ-
¤¥²Ó Ô²²¨¶¸μ¨¤ , ¢ ±μÉμ·μ° ³μ¦´μ Ê²ÊÎÏ¨ÉÓ ± Î¥¸É¢μ Ô²¥±É·μ´´μ£μ ¶ÊÎ±  ¶μ ¸· ¢´¥´¨Õ ¸ ¤·Ê£¨³¨
³¥Éμ¤ ³¨, É ±¨³¨ ± ± ¨¸¶μ²Ó§μ¢ ´¨¥ ¶¥·¨μ¤¨Î¥¸±μ£μ ¢μ§¡Ê¦¤¥´¨Ö ¶² §³Ò, ·¥¦¨³ ¸Ë¥·¨Î¥¸±μ£μ
·¥§μ´ Éμ·  ¨ ± ´ ²Ó´μ¥ Ê¸±μ·¥´¨¥ ¶² §³Ò. ’· ¥±Éμ·¨Õ ¤¢¨¦¥´¨Ö Ô²¥±É·μ´  ³μ¦´μ μ¶¨¸ ÉÓ £¨¶¥·-
¡μ²μ°, ¶ · ¡μ²μ° ¨²¨ Ô²²¨¶¸μ¨¤μ³. �Éμ § ¢¨¸¨É μÉ ¶μ²μ¦¥´¨Ö ¨ Ô´¥·£¨¨ Ô²¥±É·μ´μ¢ ¨ Ô²¥±É·μ-
¸É É¨Î¥¸±μ£μ ¶μÉ¥´Í¨ ²  ·¥§μ´ Éμ· . ‚ · ¡μÉ¥ μÉ³¥Î ¥É¸Ö, ÎÉμ ¢ Ô²²¨¶¸μ¨¤ ²Ó´μ³ ·¥¦¨³¥ Ô´¥·£¨Ö
Ô²¥±É·μ´  ´  ¢ÒÌμ¤¥ ´¥ § ¢¨¸¨É μÉ ¢¥²¨Î¨´Ò ¶μ¶¥·¥Î´μ£μ · ¤¨Ê¸  ·¥§μ´ Éμ· .

PACS: 52.38.-r, 41.75.Jv, 42.62.-b, 41.75.Lx

INTRODUCTION

In the last decade, with CPA table-top lasers, the laser intensities increased up to I =
1022 W/cm2, and electric ˇeld strengths of more than 1014 V/m were obtained [1]. Generation
of laser pulses in the multi-terawatt (or even pettawatt) power range is possible with compact
chirped-pulse ampliˇcation (CPA) systems, and the extreme light infrastructure (ELI) will be
able to generate intensities in the range of 1025−1026 W/cm2 [2]. In these high gradient
ˇelds particles can be accelerated. One of the most important applications for such short
ultra-intense laser pulses is the acceleration of charged particles, both electrons and ions [3Ä
8]. This new generation of particle accelerators could be used for various applications,
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including transmutation of cheep and hazardous materials of long-lived radioactive wastes
to valuable radioisotopes [9]. The extremely high electric ˇeld makes the laser wake ˇeld
acceleration method attractive for the development of a new generation of accelerators [10].
The ponderomotive force associated in the front and the rear sides of a short laser pulse
expels the plasma electrons from the regions where the laser ˇeld is the most intense [11] by
the laser wake ˇeld scheme. The ponderomotive force Fp is given by Fp ≈ −∇a2, where a
is the laser pulse envelope. The acceleration gradient resulting from the charge displacement
is reported to be about 100 GV/cm when plasma density is 1018 cm−3 [12].

The induced charge separation between the electrons and the ions gives rise to a space
charge ˇeld and a plasma wave [13]. Large amplitude plasma waves are generated by this
ponderomotive force in the laser wake ˇeld accelerator (LWFA).

In the linear regime, this mechanism is more efˇcient when the pulse duration of the laser
is of the order of the plasma frequency, and it is called resonant wake ˇeld. The resonant
wake ˇeld regime creates a controllable and linear accelerating structure.

In nonlinear regimes, background plasma electrons can be trapped in the plasma wave
bucket and accelerated up to GeV [14Ä18]. The self-modulated laser wake ˇeld [19] (SMLWF)
and the forced laser wake ˇeld (FLWF) [20] are the well-known nonlinear regimes. In
the SMLWF regime the envelope of the laser pulse can modulate at the plasma wave pe-
riod and drives the wake ˇeld properly with its ponderomotive force via Raman forward
scattering instability. In the FLWF regime, the laser pulse is compressed by group ve-
locity dispersion during the excitation of the plasma wave and drives the plasma wave to
very high amplitude. Electron injection in the correct phase of the plasma wave could
improve the electron acceleration efˇciency. Recently injection of the background plasma
electrons is reported instead of an external electron injector (e.g., a lilac) when wave breaking
occurs [21].

By using the steepened density proˇle, the wave-breaking injection can be fast. A well
collimated, ultra short MeV electron bunch is obtained due to the transverse wave break-
ing [22, 23] by using a shock wave driven with the irradiation of laser prepulses [24].

In recent experiments and PIC simulations [25], generation of quasi-monoenergetic elec-
trons has been reported. A cavity (bubble) free of cold plasma electrons behind the laser
pulse is observed [26]. The following features are absent in the ordinary regime of laser
wake ˇeld acceleration [27Ä30]: (i) a cavity free from cold plasma electrons is formed behind
the laser pulse instead of a periodic plasma wave; (ii) a dense bunch of relativistic elec-
trons with a quasi-monoenergetic spectrum is self-generated; (iii) the laser pulse propagates
many Rayleigh lengths in the homogeneous plasma without a signiˇcant diffraction. The
cavity behind the laser pulse is shown by shadowgraphs [31] and PIC simulation [32, 26].
Quasi-monoenergetic electron beams were generated from intense laser pulses in various gas
targets [33]. We have described analytically the new ellipsoid model [34] to be used instead
of the previous spherical cavity. In fact, the cavity shape is not exactly a sphere, and this
is a defect in previous works [27, 28]. Some deviations between shadowgraphs, PIC simula-
tion and analytical calculation results are reported because of the spherical estimation for the
cavity shape. Appropriate conditions of forming an ellipsoid cavity are obtained. We have
evaluated ˇelds inside of this cavity and the energy spectrum for relativistic trapped electrons,
and obtain energy and electron gain when self-focusing is considered.
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1. ELECTROSTATIC POTENTIAL IN A PLASMA ELLIPSOID CAVITY

We have considered an electrically neutral bulk plasma ellipsoid cavity. The volume of
the ellipsoid with axes 2ae, 2br and 2ce is V = 4πaebece/3, the total charge of the ions
is enV (here e > 0 is the value of the electron charge, n is the number of ions per unit
volume of a sample). The electrostatic potential inside a uniformly charged ellipsoid (with
total charge enV ), ψ (x, y, z), is calculated in volt units as [35]

ψ (x, y, z) =
(

enV

ccav

)
+

[
3enaebeceV

2ε0[(aebe)2 + (aece)2 + (bece)2]

]
[
1 −

(
x

ae

)2

−
(

y

be

)2

−
(

z

ce

)2
]

, (1)

where ccav is the electrical capacity of the plasma in vacuum and ε is the cavity dielectric
constant. One can see that Eq. (1) satisˇes the Poisson equation,

∇ϕ = −4πen

ε
, (2)

and all necessary boundary conditions. We normalized the potential to unity at the ellipsoid
boundary,

ϕ (x, y, z) = 1 + ϕ0

[
1 −

(
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)2
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(

y

be
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(

z

ce

)2
]

, (3)

where in this equation

ϕ0 =
3aebececcav

2ε0[(aebe)2 + (aece)2 + (bece)2]
. (4)

If we assume aebece = R3, for spheroid ellipsoid (ae > be = ce)

ϕ0 =
3aeb

2
eccav

2ε0[2(aebe)2 + b4
e]

=
3aeccav

2ε0(2a2
e + b2

e)
. (5)

Eccentricity is

E2 =
a2

e − b2
e

a2
e

(6)

and aeb
2
e = R3, according to [35] we have

Ccav =
2RE

(1 − E2)1/3 ln[(1 + E)/(1 − E)]
. (7)

Then
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e
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√
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e
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] , (8)
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and

ϕ0 =
3ae

(2a2
e + b2

e)

√
a2

e − b2
e

2

√
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e

a2
e

=
3a2

e
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e)
. (9)

Then we obtain

ϕ (x, y, z) = 1 +
(

3a2
e

(2a2
e + b2

e)
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be

)2

−
(

z

ce

)2
]

. (10)

2. FIELDS INSIDE RELATIVISTIC ELLIPSOID CAVITY

We consider a cavity moving in plasma. Ions are immobile in the cavity while the cavity
runs with the relativistic velocity v0 ≈ 1 along x axis. The ion dynamics are neglected because
the cavity dimensions are assumed to be smaller than the ion response length ≈ c/ωpi, where
ωpi = (4π e2n0/M) the ion plasma frequency and M is the ion mass. To calculate the ˇelds,
we write the Maxwell equations in terms of potentials using the following convenient gauge
Ax = −ϕ and we get [30]

ΔΦ = 1 − n

(
1 − px

γ

)
+

(
∂

∂t
+

∂

∂x

)
(∇A) +

1
2

∂

∂t

(
∂

∂t
− ∂

∂x

)
Φ, (11)

∇×∇× A + n
p

γ
+

∂

∂t

(
∂A

∂t
− ∇Φ

2

)
= 0. (12)

Here we use the wake ˇeld potential Φ = Ax − ϕ instead of the scalar one, and p is the
electron momentum. We use dimensionless units, normalizing the time to ω−1

p , the lengths to
c/ωp, the velocity to c, the electromagnetic ˇelds to mcωp/|e| and the electron density n to
the background density n0. If we use a quasi-static approximation assuming that all quantities
depend on ξ = x − v0t instead of x and t, the Maxwell equations reduce to the form

ΔΦ =
3
2
(1 − n) − n

px

γ
− 1

2
∂

∂ζ
(∇⊥ · A⊥), (13)

Δ⊥A⊥ −∇⊥(∇⊥ · A⊥) = n
p⊥
γ

+
1
2
∇⊥

∂Φ
∂ζ

. (14)

We have neglected the terms proportional to γ−2
0 � 1. Inside the cavity we have (n = 0),

then we get

ΔΦ =
3
2
− 1

2
∂

∂ζ
(∇⊥ · A⊥), (15)

Δ⊥A⊥ −∇⊥(∇⊥ · A⊥) =
1
2
∇⊥

δΦ
δζ

. (16)

We have solved Eqs. (15) and (16) with spherical symmetry and obtained

Φ = 1 − Φ0

(
1 − ζ2

a2
e

− y2

b2
e

− z2

c2
e

)
, (17)
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where Φ0 =
3

4
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e

+
4
b2
e

+
4
c2
e

, when A⊥ = 0 and Ax = −ϕ = Φ
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So we obtain

Φ = 1 −
[

3
4
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4
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e
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4
c2
e

(
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a2
e
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b2
e
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3. ENERGY OF ELECTRONS

The energy of electrons in an ellipsoid cavity can be derived using the Hamiltonian
formulation. The one-dimensional Hamiltonian of a charged particle in an electromagnetic
ˇeld is

H =
√

1 + (pc + A)2 + a2 − v0pc − ϕ, (19)

Comparison of ellipsoid (curve 1,
Eq. (25)) and spherical (curve 2,
Eq. (26)) cavity model. This ˇgure
shows that the electron beam in

the ellipsoid model has a narrower
energy distribution

where pc is the particle canonical momentum and ϕ is the
scalar potential. Hamiltonian can be split into two parts by
expanding it in the power of p2

c . The ˇrst part determines
the longitudinal motion and the second part determines the
transverse motion. We obtain the longitudinal Hamiltonian
and consider only the x dimension:

H̄ || =
√

1 + p2
x − v0pζ,c − Φ ≈ 0. (20)

If we assume an ellipsoid cavity in plasma with axes 2ae,
2be and 2ce

H || =
√

1 + P 2
x − v0pζ,c − 1 + Φ0

(
1 − ζ2

a2
e

)
. (21)

In the zeroth order we obtain the longitudinal Hamiltonian

H || =
Px

2γ2
0

− 1 − Φ0

(
1 − ζ2

a2
e

)
≈ 0. (22)

With solving the Hamiltonian equation, the maximum en-
ergy of the accelerated peaks at the cavity center

γmax = 2γ2
0 + 2γ2

0Φ0

(
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a2
e

)
. (23)

By substituting the Φ0 = 3
4
a2

e

+
4
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e

+
4
c2
e

in Eq. (23) for

cavity center we obtain

γmax = 2γ2
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3γ2
0

2
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e

+
2
b2
e

+
2
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e

, (24)
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where for elongation case when (ae > be = ce):

γmax = 2γ2
0 +

3γ2
0b2

e

4
. (25)

We have found that cavity elongation in laser propagation direction is not effective on electron
energy and for other directions; the elongations are small and can be neglected.

Initial condition to obtained ellipsoid cavity is deˇned by laserÄplasma parameters. In
conclusion it can be considered that the electrons of the bunch have equal energy and the
ellipsoid cavity holds the electron bunch in quasi-monoenergetic situation better than previous
spherical models. In spherical model, energy of the accelerated electrons peak is given by [30]

γmax ≈ 1
2
γ2
0R2. (26)

In this equation R is radius of spherical bubble and γ0 is deˇned by γ0 = (1 − v0)−1/2,
where v0 is the laser pulse group velocity [14]. As Eq. (26) shows, electron bunch energy is
strongly related to the transverse radius of cavity and during the laser propagation because of
transverse elongation of cavity the energy peak spectrum will spread but in ellipsoid model.
Equation (25) shows that the longitudinal elongation (ae) is not effective on energy spectrum
of electron bunch. The result electron beam in ellipsoid model will be quasi-monoenergetic
(see ˇgure).

CONCLUSIONS

In the present work we derived analytical expressions for the ˇelds within an ellipsoid
cavity moving at relativistic velocity in plasma. Our analytical model is in agreement with the
PIC results. We derived the maximum energy of electrons. We showed that the ˇelds linearly
depend on the coordinates as in the spherical we have shown that the cavity elongation has
not affected maximum electron energy so the quality of electron beam is developed.
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