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A new method based on the Monte Carlo calculation on the lattice is proposed to study the Casimir
effect in the noncompact lattice QED. This method can be used for ChernÄSimons surfaces (thin metal
ˇlms) and for dielectric plates.
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1. INTRODUCTION AND GENERAL MOTIVATION

During the last few years the Casimir effect has attracted much attention due to the great
experimental and theoretical progress in studying of this phenomenon. This macroscopic
quantum effect plays a crucial role in nanophysics, micromechanics, quantum optics, con-
densed matter physics, material science, and it is also very important for different models of
boundary states in hadron physics, heavy-ion collisions, and cosmology.

Nowadays, a lot of theoretical methods for calculation of the Casimir effect were proposed.
Various approximate methods (like the proximity force approximation method [1, 5]) are
used in the case of curved surfaces. There has been a large progress in this approximate
method in the last few years due to the possibility to take into account the ˇrst terms of the
asymptotic expansion for small separation between bodies [2]. Also, several exact methods
were developed recently for the Casimir effect calculation. One of them is based on the Green
function method [3]. In this method the full Casimir force on a body is expressed in terms of
the mean electromagnetic stress tensor 〈Tij〉 and its components can be obtained from Green's
functions. Evaluation of the Green function is the standard task in various electromagnetic
problems, so many standard techniques become applicable for the Casimir calculations in this
case. Another interesting method is multipole expansion of the Casimir interaction [4]. The
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Casimir energy is obtained in this method as an interaction between multipoles, generated by
quantum current 	uctuations.

In our work we propose a new numerical method for the Casimir energy calculation based
on the Monte Carlo technique in the lattice quantum ˇeld theory. This approach can be useful
because many effective numerical algorithms were developed for the Monte Carlo calculations
in lattice QFT. These methods are rather simple and very suitable for parallel calculations, so
it will be interesting to apply them for a new problem.

A crucial obstacle on the way of the realization of any Casimir problem on the lat-
tice is the following. If the Casimir energy is a response of the vacuum to the presence
of the boundary, what is ®the boundary¯ in terms of lattice formalism? In other words,
what is an observable quantity corresponding to such a boundary? In fact, the answer is
nontrivial and leads to the deˇnition of two new observational quantities in lattice ˇeld
theory.

In Sec. 2 we will discuss the ChernÄSimons boundary condition (it can be used as a model
for thin metal ˇlms). In Sec. 3 we will consider Wilson ®bag¯ and lattice description of
Casimir effect in MaxwellÄChernÄSimons theory. Section 4 will be devoted to the description
of dielectric and in Sec. 5 we will discuss the continuous limit of lattice calculations.

2. CHERNÄSIMONS BOUNDARY CONDITIONS
AND CASIMIR EFFECT

Casimir effect is a response of the vacuum to boundary condition. The spectrum of vacuum
	uctuations depends on the boundary conditions. Changing of the boundary conditions leads
to changing of the spectrum of vacuum 	uctuations and so to generating of the corresponding
Casimir force on the boundary. In the standard quantum ˇeld theory formalism, such changing
of spectrum of vacuum 	uctuations can be described, for example, by means of the Green
function method [1]. This approach is a very powerful tool for studying many essential
Casimir tasks [1]. Unfortunately, the application of this analytical method to the case of more
complicated shape of the boundary surfaces is not so easy due to calculation difˇculties. Our
aim is the creation of the numerical method for the Casimir effect calculation directly from
the quantum ˇeld theory action. The lattice formalism looks very attractive for this role but
manifestly we cannot base in our approach on the separation of vacuum modes corresponding
to boundary from the full spectrum of vacuum 	uctuation. In lattice formalism we work in
Euclidean space and deal with full spectrum of vacuum 	uctuations and cannot easily snatch
out vacuum 	uctuations corresponding to some boundary conditions. We need some very
delicate approach for separation of vacuum 	uctuation modes that preserve gauge invariance
of our lattice formalism. Fortunately, such an approach to Casimir problem was proposed
recently [8].

This approach is based on a very elegant idea coming from some unique properties of
the ChernÄSimons action in three dimensions [8]. Let us consider electromagnetic ˇelds in
3+1 dimensions with the Maxwell action and additional ChernÄSimons action given on three-
dimensional integral on the boundary surface S:

S = −1
4

∫
d4x FμνFμν − λ

2

∮
d3sεσμνρnσAμ(x)Fνρ(x), (1)
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where εσμνρ is the LeviÄCivita tensor and nσ is the normal vector to the boundary surface
S; λ is a real parameter.

Let us consider now the simplest form of boundary surface S, namely two parallel inˇnite
planes placed from each other at the distance R. The ChernÄSimons formulation of this
canonical Casimir problem was studied analytically in a series of works [9]. We will use this
analytical answer for the ˇtting of our numerical data.

In the case of plane form of the boundary surface S, the ChernÄSimons action in (1) has
the following form:

SCS =
λ

2

∫
(δ(x3) − δ(x3 − R))ε3μνρAμ ∗ (x)Fνρ(x) d4x,

where, in our formulation of this Casimir problem, normal vectors to the planes are turned
in the opposite directions. This choice of the normal vector orientation corresponds to
our renormalization procedure based on the connection between open and closed Casimir
problems.

If the parameter λ is small, electromagnetic ˇelds obviously do not feel any boundary
and are free. What happens if the parameter λ becomes large and tends to inˇnity and ˇelds
dynamics on the boundary surface S is determined by ChernÄSimons action? Let us consider
the equation of motion obtained from the action (1):

∂ν∂νAμ + λ(δ(x3) − δ(x3 − R))ε3σνρAσ∂νAρ = 0. (2)

At λ → ∞, it is easy to obtain from (2) corresponding boundary conditions on the
surface S:

E‖|S = 0, Hn|S = 0,

where Hn and E‖ are normal and longitudinal components of magnetic and electric ˇelds,
correspondingly. These conditions mean the nulling of the energy 	ux of the electromagnetic
ˇeld through the surface.

The analytical answer of Casimir energy per unit area for two planes given by the Green
function method is the following [9]:

ECas = − π2

720R3
f(λ),

where function f(λ) : limλ→∞ f(λ) = 1 can be written as

f(λ) =
90
π4

Li4

(
λ2

λ2 + 1

)
.

Here the polylogarithm function Li4(x) is deˇned as

Li4(x) =
∞∑

k=1

xk

k4
= −1

2

∞∫
0

k2 ln(1 − x e−k) dk.
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3. WILSON ®BAG¯ AND LATTICE DESCRIPTION
OF CASIMIR EFFECT IN MAXWELLÄCHERNÄSIMONS THEORY

In our work we use the four-dimensional hypercubical lattice and the action for the
noncompact U(1) QED:

S =
β

2

∑
x

∑
μ<ν

θ2
p,μν(x),

where the link and plaquette variables are deˇned as

θl,μ(x) = e a Aμ, θp,μν(x) = �μθl,ν(x) −�νθl,μ(x),
�μθl,ν(x) = θl,ν(x + μ̂) − θl,ν(x).

Here a is a lattice step and the parameter β = 1/e2. Physical quantities are calculated in the
lattice formalism by means of ˇeld conˇguration averaging, where the ˇeld conˇgurations
(the set of all link variables) are generated with the statistical weight e−S .

We have clariˇed in the previous section that the additional ChernÄSimons action describes
the Casimir effect. In order to ˇnd a lattice description of the Casimir interaction between
boundary surfaces, let us consider Wilson loop, which describes the interaction of charged
particles. Wilson loop can be written in QED in Euclidean time as

WC = exp

⎛
⎝ig

∮
C

Aμdxμ

⎞
⎠ = exp

(
i

∫
JμAμdx4

)
. (3)

Wilson bag for two plane surfaces

The exponent in (3) is the additional term to the
action. This term describes the interaction of the
ˇeld Aμ with the current Jμ(x) = g

∮
C

δ(x−ξ) dξμ of

charged particle. Conˇguration averaging of Wilson
loop 〈W (R, T )〉 (where R and T are dimensions of
the loop) converges in Euclidean time in the limit
T → ∞ to

〈W (R, T )〉 → C e−V (R)T ,

where V (R) is the energy of interaction between
charged particles. The same method can be used for
calculation of Casimir energy by means of ChernÄ
Simons action.

Analogously to the description of charged parti-
cles interaction by 1D integral along Wilson loop, we
will describe the Casimir interaction of surfaces by
corresponding 3D integral. The ˇrst problem is that

for stationary objects the action (2) is an integral from t = −∞ to t = ∞, so by analogy to
Wilson loop, we should enclose the surface of the integration in t direction. The integration
surface for two planes is shown in the ˇgure. This closing procedure can be performed both
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for plane surfaces and for any curved surface in three-dimensional space. As the result of
this procedure, so-called Wilson bag [6,7] can be obtained. It can be written as

exp

⎛
⎝iλ

∮
Σ

εμνρσAνFρσdSμ

⎞
⎠ ,

where Σ is closed three-dimensional surface in four-dimensional space-time. The ˇnal con-
clusion is that Wilson bag is (by analogy to Wilson loop) an observable quantity which gives
us Casimir energy of the objects, deˇned by the surface of integration. For two planes we
will calculate the following object:

Wbag(R, T ) = e iλS(R,T ),

where

S(R, T ) =

T∫
0

dt

∫ ∫ ∫
dx dy dz (δ(z − R) − δ(z))ε3νρσAνFρσ+

+

R∫
0

dz

∫ ∫ ∫
dx dy dt (δ(t − T )− δ(t))ε4νρσAνFρσ .

And in Euclidean time in the limit T → ∞

〈Wbag(R, T )〉 → C e−ECas(R)T .

The second problem is to rewrite the Wilson bag in terms of lattice objects (links and
plaquettes). The product AνFρσ can be exactly constructed only in noncompact QED. So
we use noncompact theory, because only in the noncompact QED there are lattice analogues
of Aν and Fρσ Å θl,ν(x) and θp,ρσ(x), respectively. There are two requirements for lattice
representation of Wilson bag:

1) The whole integral for Wilson bag should be the gauge invariant quantity.
2) ®Locality¯. It means that in lattice representation of the product AνFρσ , Aν and Fρσ

should be given in the same point x. This requirement is nontrivial, because θp,ρσ gives the
value of Fρσ in the center of the plaquette, but θν gives the value of Aν in the center of the
link. These are different points.

These two requirements lead to the following structure of lattice representation for CS
action:

SCS =
1
8
β

∑
x∈V3

εμνρσnμ(x)(θl,ν(x) + θl,ν(x + ρ̂) + θl,ν(x + σ̂)+

+ θl,ν(x + ρ̂ + σ̂))(θp,ρσ(x) + θp,ρσ(x + ν̂)).

The expression θl,νθp,ρσ gives us a3e2AνFρσ in continuum limit and by means of the factor
β = 1/e2 one can eliminate e2 from the action.
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4. LATTICE DESCRIPTION OF DIELECTRIC

The same method, based on analogy to Wilson loop, can be used for lattice description
of the dielectric volumes.

The simplest dielectric (when we neglect anisotropy and ε(ω) dependence) can be de-
scribed by the following action:

S =
1
4

∫
V̄

FμνFμνdV +
1
2

∫
V

(
ε

3∑
i=1

F0iF
0i +

∑
i<j

FijF
ij

)
dV.

Here V is four-dimensional volume occupied by dielectric. Additional action in this case can
be written as

Sadd =
(ε − 1)

2

∫
V

( 3∑
i=1

F0iF
0i

)
dV.

Its representation in noncompact QED lattice in Euclidean time is as follows:

Sadd.lat =
ε − 1

2
β

∑
x∈V

3∑
i=1

θ2
p,0i(x).

And we can obtain the Casimir energy of dielectric body by calculation of the conˇguration
average:

〈eiSadd.lat〉 → C e−ECasT ,

where T is the size of 4D volume V in t direction.

5. CONTINUOUS LIMIT

The last point is the consideration of the continuous limit of our calculations.
The ˇrst feature of continuous limit procedure is that in our Casimir calculations nothing

depends on β. Casimir effect without radiational corrections does not depend on the electron
charge in the continuous theory. On the lattice the independence appears due to the following
reasons: 1) there is no phase transition in the noncompact lattice QED, and β here only plays
the role of the scale parameter for a numerical value of link variables; 2) we eliminate this
dependence from observable quantities due to the multiplication by β in the ˇnal expressions
for lattice actions. So β can be chosen in rather a large interval according to calculational
convenience.

The second stage is ®inˇnite lattice volume¯ limit N → ∞. One of the basic requirements
for continuous limit procedure is rotational symmetry restoration. For non-Abelian theories
this restoration occurs due to large correlation length (or, in other words, small physical lattice
size). So we can restore rotational symmetry by increasing correlation length. This procedure
cannot be performed in noncompact Abelian but anyway rotational symmetry is restored at
sufˇciently large lattice distances [10]. So we do not need large correlation length for our
continuous limit procedure. Instead of it we have limit N → ∞, where N is the size of the
lattice.
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CONCLUSIONS

In this work we have proposed two new lattice variables that, by analogy to Wilson
loop, describe Casimir interaction. The ˇrst of them is Wilson ®bag¯. It is generated by
ChernÄSimons boundary conditions. This variable can be calculated exactly as gauge invariant
quantity only in noncompact theory. The second variable is based on the simplest model of
dielectric material. For both variables continuous limit procedure exists which consists of one
stage: ®large lattice limit¯.
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