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A NOTE ABOUT THE T’HOOFT ANSATZ
FOR SU(N) REAL TIME GAUGE THEORIES

J. Manjavidze® "', V. Voronyuk":?

“Institute of Physics, Tbilisi, Georgia
b Joint Institute for Nuclear Research, Dubna

The t'Hooft ansatz which reduces the classical Yang—Mills theory to the A¢* one is under consider-
ation. It is shown that in the framework of this ansatz the real-time classical solutions for the arbitrary
SU(N) gauge group are obtained by embedding SU(2) x SU(2) into SU(N). It is argued that this
group structure is the only possibility in the framework of the considered ansatz. New explicit solutions
for SU(3) and SU(5) gauge groups are shown.

P ccm TpuB ercs H3 1 T’ XO(T , MepeBONILIMIT KJI CCHUECKyio Teopuio STHr —Muc B Teopuio A,
ok 3 HO mts npoussonbHON SU (INV)-K MOGPOBOYHOI TPYIIIBL, YTO B P MK X TOr0 H3 II KJI CCHYe-
CKHe pEIleHHs B pe JIbHOM BpeMeHH Mmoiyd Iotcs Brmoxenuem SU(2) x SU(2) B SU(N). Ilok 3 Ho,
YTO 9TO EAMHCTBEHH 51 BO3MOXHOCTh B P MK X J HHOro H3 Il . [IpuBeieH SBHBIA BHJ IIOCTPOCHHOIO
peutenns wit SU(3)- u SU(5)-k mMOpOBOYHBIX TPYIIIL.

INTRODUCTION

In order to simplify the problem of solving a Yang—Mills equation for the vector field,
t’Hooft et al. offered the ansatz for the Euclidean space [1]. It reduces the Yang—Mills
equation to the equation for a single scalar field ¢. The SU(2) classical solutions discovered
by means of this ansatz are well known [2] and were used to generate SU(N) solutions by
simply embedding SU(2) into SU(N) [3].

One of them allows the coordinate transformation to the Minkowski space so that it
becomes nonsingular, real and possesses a finite action and energy [2,4].

The SU(2) gauge group was assumed for both the Euclidean and the Minkowski space
(see also [5]), while the experimental analysis shows that QCD is the SU (3) gauge theory [6].
So, the knowledge of the real-time classical solution for QCD is important since it allows one
to analyze the nonperturbative corrections [7] to the observables.

In this article we will try to find a SU(N) solution by means of the t'Hooft ansatz. The
only condition we assume for the ansatz is the following: it must reduce the Yang—Mills
equation to the real scalar A\¢* theory. We will solve this condition and will show that the
only solution of the classical Yang—Mills equation in the framework of the t’'Hooft ansatz is
embedding SU(2) x SU(2) into SU(N).
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1. DEFINITION OF ANSATZ
Let us start from the Yang-Mills equation in the matrix form
O F +ig[AH, F| =0, (1)

where
Ay =taAap,

Fu = 0uAy — 0, A, +iglA,, A,

t, are generators of the gauge group.
Let us consider the t’Hooft ansatz without any assumptions about gauge group

1
Au(@) = 21w 0”0 §(z),

where 7, are some matrices. We will consider that A, (x) satisfies the Lorentz gauge
condition: 9" A,, = 0 and so 7, are antisymmetric over ; and v matrices. It is assumed that
7w are constant in this gauge.

It is necessary to take the equality

_i[nuaa nl/p] = nuygpo - nupgau + nopgp,l/ - nol/gp,p (2)

in order to reduce the Yang-Mills equation to the equation for the single scalar field. As the
result of substitution of ansatz with the property (2) into the Yang—Mills equation (1), we
have

O¢ + Ap® =0, (3)

where A is an arbitrary integration constant. Emphasize that Eq. (3) is the result of (2), this
reduction is valid for any gauge group.

Therefore, the problem (1) was divided into two parts: the searching of 7, from the
algebraic equality (2) and the solving of equation (3) for ¢(x).

Particular solutions of equation (3) are known (see [2,4,8,9]) and we will not consider
this question.

The matrices 7, can be written in a convenient form

Nuv = _EOMVNXN + igOp,Yu - igOVYM7 k=1,2,3, €]
since they are antisymmetric, where €123 = 1; the unknown X; and Y, are matrices in the
group space, Xg =0, Yo =0, X; = - X', V; = Y.

Let us insert (4) into (2). Then we obtain algebraic equations for X; and Y;. Because of

antisymmetry of 7, it is convenient to examine only three cases:
1. u=0,0=1v=0, p=7, where 7,5 = 1,2,3. Then we have

[Y:, Y] = ieijnXk; S)
2. u=0,0=1,v=7j, p=k, where i,j,k =1,2,3. It is easy to obtain

Ejks[Yi, Xs] = iYjgir — iYrgij.
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So, we have
Yi, X;] = ieiju Yo (6)

after changing the indices
3. u=1t,0=4,v==Fk, p=s, where i, j,k,s = 1,2,3. This case gives

—i[(—€ijpXp)s (—erst Xi)] = (—€ikpXp)gsj — (—€ispXp) Gk + (—€jspXp) gik — (—EjkpXp) Gis-
After simplification and changing of the indices we have
[Xi, Xj] = igiijk~ (7)

The other cases can be easily reduced to these three ones.
It follows from (5)—(7) that

(T, Tj| = iciji T, (i, Kj] = igiji Kk, (8
Lji,lcj] =0,
where
Xz + YL _ X’L - sz
To= S0 K=

It follows from (8) that N x N matrices J; and K; are elements of the SU(2) x SU(2) group.
Then the ansatz can be written as follows:

Nuv = (_5O/wnu7n + igO/Lju - i90m7;¢) + (_SO/LDK,’CH - igO;L’Cu + igOL/’C;L) )
k=1,23.

€))

This is the general solution of (2) and, therefore, it is unique. There always exists a
nonzero t’Hooft ansatz for any N > 2 since the representation of the SU(2) x SU(2) group
by N x N matrices always exists. The meaning of such a representation is embedding
SU(2) x SU(2) into SU(N).

This ansatz gives complex potentials A, for real ¢; however, one can check that it leads
to a real Lagrangian density. Therefore, one can expect that there exists some complex gauge
transformation which makes it real as it was done for SU(2) [4].

Let us consider the solutions for SU(2), SU(3) and SU(5) groups.

1.1. SU(2). For the SU(2) gauge group the only solution is (either J; or K; is equal to

Zero)
o;

X, =2, = —.
2

Then we obtain the well-known solution [1,2] which can be written in a component form

Napr = —E€0apv + igOugaV + igOVgapu
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1.2. SU(3). For the SU(3) gauge group also either J; or K; is equal to zero, so we have
X; = 1Y;.

There exist both reducible and irreducible representations of the SU(2) group in terms of
3 X 3 matrices.

Reducible Representation. The SU(3) group contains three independent SU (2) subgroups
which do not form direct product. So there exist three independent solutions:

M: X\ =t1, XV =, X5 =t

In the component form we obtain

0 +i 0 0 0 0 =i 0
|F o0 0 o B 0 0 1
Mw =19 0 0 -1 » ™»~ |5 0o o0 o] °
0 0 1 0 0 -1 0 0

pv nv
0 0 0 i
N3 pw = 8 (1) 01 8 y Naw =0, a=4,...,8
0 0 0]

1
a: XM =, XM =5, x{W = 5 (V3ts +1);

1
am: X{" = to, X5 = b7, X" = 2 (VBis — ).
The cases (II) and (III) are similar to the (I) with the difference in gauge indices.

Irreducible Representation. There also exists an irreducible representation of the SU(2)
group by 3 x 3 matrices,

1 010 1 0 —i 0 10 0
Xi=— (1 0 1), Xo9=—14% 0 —i], Xg3=10 0 0
V2 010 V2 0 4 0 0 0 —1
Then in the component form we obtain
0 £ 0 O 0 0 =i O
F: 0 0 O 0 0 0 1
M =V g g oy | = V2 i 0 0 0] °
0 0 1 0 0 -1 0 o0
% nv
0 0 0 =i
_ 0 0 -1 0
=10 1 0 0 ’
F 0 0 O

v
774;1,1/:775;1#:07 Nepr = Mpvs MNipry = N2pv, 778MV:\/§773;1,V~
1.3. SU(5). Considering the SU(5) group it is interesting to examine the solution with

both nonzero SU(2) groups. If J; or K; is equal to zero, then the solution will be given by
reducible or irreducible representation of the group in a way like SU(3).
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For the J; one can take irreducible group presentation for the 3 x 3 matrices, for example,
in the upper left corner and for the K; one can take 2 x 2 group presentation for the lower
right corner, and vice versa. It can be written in the obvious form

J 00
SU(2) 0 0
3x3 00
000 K
000 SUQ2 2x2

Then the ansatz in component form is as follows:

0 +i 0 0 0 0 =i 0
T 0 0 0 0 0 0 1
M =V2L0 g g S| T = V2 i 0 0 0] °
0 0 1 0 0 -1 0 0
5% nv
0 0 0 =i
[ o 0 -1 o0
B =109 1 0 0 :
0 0 0/

Napv = N5 pv = 0, Nopuv =Muvs MNipw =MN2pvs  N8uv = \/gnihun No,...,20 v = 0,

0 % 0 0 0 0 Fi 0
i 0 0 0 0 0 0 1
Piw =119 0o 0o -1 | » ™»T | 4 0o o0 of
0 0 1 0 0 -1 0 0
pv g
0 0 0 =i
0 0 -1 0
23 uv = 0 1 0 0 B 24 pv = 0.
i 0 0 0)

If one believes that the SU(5) theory is unification of electroweak and strong interactions,
then indices a = 1,...,8 correspond to the strong and a = 21,...,23 to the electroweak
interactions. But one can see that this solution cannot be used for this purpose.

CONCLUSIONS

In the framework of the ansatz the SU(N) classical solutions always exist and each one
is given by embedding SU(2) x SU(2) into SU(N).

Let us assume that ¢ is invariant under O(4) x O(2) coordinate transformations [4,9]. In
the framework of this prescription, we obtain the real solution of the Yang-Mills equation
ToLg ToLqg

Ay = :t—Qja + —QICav
gy gy
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1
A = — | —cgintn + 5@5(1 +2?) £ xaxl} Tt

1 1
+ 9_2 |:_Eainxn + 5@15(1 + 1'2) + TaZs ICaa

where

1
y2:1(1—x2)2+x3, ci23=1, n=1,...,3,

and J,, K, are corresponding representations of SU(2) x SU(2) group by N x N matrices.
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