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The (semi)microscopic double-folding nucleusÄnucleus optical potentials are suggested for consid-
eration of inelastic scattering with excitation of collective nuclear states by using the adiabatic approach
and the elastic scattering amplitude in the high-energy approximation. The analytical expression for
inelastic scattering amplitude is obtained keeping the ˇrst-order terms in the deformation parameter of a
potential. Calculations of inelastic cross sections for the 17O heavy ions scattered on different nuclei at
about hundred MeV/nucleon are made, and the acceptable qualitative agreement with the experimental
data is obtained without introducing free parameters. The prospect of the method for further applications
is discussed.

„²Ö · ¸¸³μÉ·¥´¨Ö ´¥Ê¶·Ê£μ£μ · ¸¸¥Ö´¨Ö ¸ ¢μ§¡Ê¦¤¥´¨¥³ ±μ²²¥±É¨¢´ÒÌ ¸μ¸ÉμÖ´¨° Ö¤¥· ¶·¥¤² -
£ ¥É¸Ö ¨¸¶μ²Ó§μ¢ ÉÓ (¶μ²Ê)³¨±·μ¸±μ¶¨Î¥¸±¨° Ö¤·μ-Ö¤¥·´Ò° μ¶É¨Î¥¸±¨° ¶μÉ¥´Í¨ ²,  ¤¨ ¡ É¨Î¥¸±¨°
¶μ¤Ìμ¤ ¨  ³¶²¨ÉÊ¤Ê Ê¶·Ê£μ£μ · ¸¸¥Ö´¨Ö ¢ ¢Ò¸μ±μÔ´¥·£¥É¨Î¥¸±μ³ ¶·¨¡²¨¦¥´¨¨. �μ²ÊÎ¥´μ  ´ ²¨É¨-
Î¥¸±μ¥ ¢Ò· ¦¥´¨¥ ¤²Ö  ³¶²¨ÉÊ¤Ò ´¥Ê¶·Ê£μ£μ · ¸¸¥Ö´¨Ö, £¤¥ Ê¤¥·¦¨¢ ÕÉ¸Ö Î²¥´Ò ¶¥·¢μ£μ ¶μ·Ö¤± 
¢ · §²μ¦¥´¨¨ ¶μÉ¥´Í¨ ²  ¶μ ¶ · ³¥É·Ê ¤¥Ëμ·³ Í¨¨. ‚Ò¶μ²´¥´Ò · ¸Î¥ÉÒ ´¥Ê¶·Ê£¨Ì ¸¥Î¥´¨° · ¸-
¸¥Ö´¨Ö ÉÖ¦¥²ÒÌ ¨μ´μ¢ 17O · §´Ò³¨ Ö¤· ³¨ ¶·¨ Ô´¥·£¨ÖÌ μ±μ²μ 100 ŒÔ‚/´Ê±²μ´, ¨ ¶μ²ÊÎ¥´μ
Ê¤μ¢²¥É¢μ·¨É¥²Ó´μ¥ ¸μ£² ¸¨¥ ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨ ¡¥§ ¢¢¥¤¥´¨Ö ¸¢μ¡μ¤´ÒÌ ¶ · ³¥É·μ¢.
�¡¸Ê¦¤ ÕÉ¸Ö ¢μ§³μ¦´μ¸É¨ ¶·¥¤²μ¦¥´´μ£μ ¶μ¤Ìμ¤  ¤²Ö ¤ ²Ó´¥°Ï¨Ì ¶·¨²μ¦¥´¨°.

INTRODUCTION

The theory of excitations of nuclear collective states in peripheral nuclear collisions is
based on the elastic scattering optical potential U(r) = V (r) + iW (r). This latter is used

to obtain the transition potential Uint = U
(N)
int + U

(C)
int for inelastic channel. Recently, in [1],

the nucleusÄnucleus inelastic scattering with excitation of 2+ rotational states was considered
in the framework of the high-energy approximation utilizing the phenomenological WoodsÄ
Saxon type potential. The collective variables {αλ μ}, which characterize the deformation of
the surface of a potential, were introduced through the radius

� = R + δR, δR = R
∑
λμ

αλμ Yλμ(θ, φ). (1)
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Here θ, φ are spherical coordinates of a space vector r in the laboratory system. The wave
functions of rotational states and collective variables {αλ μ} are given as follows:

|IM〉 =

√
2I + 1
8π2

D
(I)
M0(Θi), α2 μ = β2 D

(2) ∗
μ0 (Θi), (2)

where β2 is the deformation parameter and {Θi} are the intrinsic axis rotational angles.
In [1], suggesting small β2 � 1, the transition potential was obtained as the derivative of

U(r,�), and the inelastic scattering amplitude was derived in adiabatic approximation

fIM (q) = 〈IM | f(q, {αλμ})|00〉, (3)

where q = 2k sin (ϑ/2) is the momentum transfer; k is the relative momentum, and ϑ,
the angle of scattering. The elastic scattering amplitude f(q, {αλμ}) was taken in the high-
energy approximation (HEA) with the ®frozen¯ coordinates of collective motion {αλμ}. Then,
inelastic cross sections for the 17O heavy ions scattered on different nuclei at about hundred
MeV/nucleon were calculated, and an acceptable agreement with the experimental data was
received. So, the conclusions were made on applicability of HEA to study the nucleusÄnucleus
inelastic processes.

The aim of this paper is to apply not phenomenological but microscopic potentials for
calculating an inelastic scattering amplitude. The matter of fact is that the phenomenological
potentials, used for inelastic scattering, must be specially ˇtted in the corresponding elastic
channel at the same energy and for the same couple of scattered nuclei as they are in inelastic
channel. Otherwise, at present there are no tables of global optical potentials for the heavy-
ion elastic scattering at different energies and kinds of colliding nuclei. Moreover, there
exists the problem of ambiguity of parameters of phenomenological potentials (see, e.g., [2])
since the ˇt needs a large amount of data, and thus any additional information, involved into
consideration, in particular, the data of inelastic scattering, is very desirable.

On the other hand, in the last two decades of years the double-folding (DF) microscopic
nucleusÄnucleus potentials occur rather popular. They are calculated using the following
expression:

V DF(r) = V D(E, r) + V EX(E, r) =
∫

d3r1 d3r2ρ1(r1) ρ2(r2) vD(ρ, E, r12) +

+
∫

d3r1d
3r2ρ1(r1, r1 + r12)ρ2(r2, r2 − r12)vEX(ρ, E, r12) exp

[
ik(r)r12

M

]
, (4)

where r12 = r+ r2− r1 is the distance between nucleons of colliding nuclei; k(r) is the local
momentum of relative motion of nuclei, and M = A1A2/(A1 +A2). (For details see, e.g., [3,
4].) These DF potentials apply the nuclear density distributions ρ(r) and matrices ρ(x,y), and
also include the effective nucleonÄnucleon potentials vD and vEX. In principle, all of these
quantities are known from independent experimental studies. Dependence of NN potentials on
kinetic energy and on the matter density in overlapping region of nuclei was also established.
DF potentials take into account the antisymmetrization of the system by accounting for the
knock-on effects (interchange of nucleons 1 and 2) and describe sufˇciently well the shape
of the peripheral region of potentials, very important in formations of both the differential
and total cross sections. For a period of years, in comparison with experimental data, these
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real DF potentials were supplemented by the phenomenological imaginary potentials WP (r)
having three (or more) free parameters. By doing so, it was shown that one needs to diminish
slightly the calculated real part by introducing a renormalization coefˇcient Nr, and thus, the
whole potential U(r) = NrV

DF + iWP (r) has four (or more) free parameters.
However, recently in [5], it was demonstrated that the imaginary part can also be calculated

microscopically by transforming the eikonal phase of the high-energy microscopical theory [6,
7] of scattering of complex systems. It was shown in [5] that this imaginary potential WH

contains the folding integral which corresponds to the integral of only the direct part V D of
the DF potential (4). This optical potential has the form U(r) = NRV DF(r) + iNimWH(r).
In addition, it was reasonable to generalize this form to include the exchange term, too, and
then to test the potential U(r) = NrV

DF + iNimV DF(r), as well. These potentials were
called the semimicroscopic ones because their basic forms WH and V DF were calculated
microscopically, without introducing free parameters, and only two parameters Nr and Nim

must be adjusted to experimental data.
Figure 1 shows by dashed lines the double-folding potentials V DF calculated in [8] for

scattering of the 17O heavy ions on different nuclei at Elab = 1435 MeV. The respective
optical potentials were adjusted to the elastic scattering differential cross sections using for

Fig. 1. The double-folding potentials (dashed lines) and their derivatives (solid lines) calculated for

different couples of nuclei at Elab = 1435 MeV
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Fig. 2. The ratio of the elastic scattering differential cross sections to the Rutherford one (solid lines)

calculated using the semimicroscopic optical potentials NrV DF + iNimV DF at Elab = 1435 MeV and

compared with the experimental data from [9]

imaginary terms the forms NimWH and NimV DF. In Fig. 2 we reproduce the ratios of elastic
cross sections to the Rutherford one calculated in [8] in the framework of the high-energy
approximation using the microscopic potentials U(r) = NrV

DF(r) + iNimV DF, and their
comparisons with the experimental data from [9]. The adjusted normalization coefˇcients
Nr and Nim were obtained as 0.6 and 0.6 for 60Ni, 0.6 and 0.5 for 90Zr, 0.5 and 0.5 for
120Sr, and 0.5 and 0.8 for 208Pb. One sees fairly well agreement with the data in the region
of an applicability of HEA at θ �

√
2/kR. So, these potentials can be applied further in

calculations of inelastic scattering of the same nuclei at the same energy for comparisons with
existent experimental data on the 2+ state excitations [9].
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1. SOME FORMULAE AND COMMENTS

The microscopic potentials have no obvious parameters something like the radius R
and diffuseness a of a WoodsÄSaxon potential. Therefore, in order to introduce there the
dependence on internal collective variables αλ μ, we make, in analogy with (1), the respective
changes of spatial coordinates

r ⇒ r + δr, δr = −r
∑
λμ

αλμYλμ(θ, φ). (5)

Then, expanding the potential in δr we obtain the generalized optical potential consisting of
two terms, the spherically symmetrical and deformed one:

U (N)(r, {αλ μ}) = U (N)(r) + U
(N)
int (r, {αλ μ}), (6)

where the transition potential (its nuclear part) is as follows:

U
(N)
int = −r

d

dr
U(r)

∑
μ

α2μY2μ(θ, φ). (7)

In Fig. 1 one can see the behavior of the derivatives of microscopic potentials V DF for the
above-considered cases. All of them have typical maxima in the surface region of a potential.
The respective quadrupole part of the generalized Coulomb potential U (C)(r, {αλ μ}) is ob-
tained as usually with the help of its deˇnition through the uniform charge density distribution

having the radius � as in (1) with RC = rc(A
1/3
1 + A

1/3
2 ). This yields in [1]

U
(C)
int =

3
5

UB

[( r

RC

)2

Θ(R − r) +
(RC

r

)3

Θ(r − R)
] ∑

μ

α2μ Y2μ(θ, φ), (8)

where UB = Z1Z2e
2/RC .

Then, we use the expression for high-energy amplitude of scattering

f(q) = i
k

2π

∫
bdbdφ eiqb cos φ

[
1 − eiΦ

]
. (9)

Here integration is performed over impact parameters b and on its azimuthal angle φ, and the
eikonal phase is determined by the nucleusÄnucleus potential

Φ = − 1
�v

∞∫
−∞

U(r + δr) dz, r =
√

b2 + z2, (10)

where v is the relative velocity of colliding nuclei. Substituting here the total potential having
the central and transition terms, one can write

Φ = Φ0(b) + Φint(b, {αλμ}, φ), (11)

Φint = β2

∑
μ=0,±2

Gμ(b)D
(2) ∗
μ0 (Θi) eiμφ, (12)
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Gμ(b) = − 2
�v

∞∫
0

dz Y2μ (arccos (z/r), 0)×

×
[
−r

dU(r)
dr

+
3
5

UB

[( r

RC

)2

Θ(R − r) +
(RC

r

)3

Θ(r − R)
]]

, (13)

where r =
√

b2 + z2. Substituting (11) in (9) and (3), and expanding the exponential function
exp (iΦint), we retain only a term of the ˇrst order in β2. Then, integration over rotational
angles Θi can be performed, and one gets the inelastic scattering amplitudes fλ μ(q) and
differential cross section as follows [1]:

f20(q) =
k√
5
β2

∞∫
0

bdbJ0(qb)G0(b) eiΦ0(b), (14)

f22(q) = − k√
5
β2

∞∫
0

bdbJ2(qb)G2(b) eiΦ0(b), (15)

dσin

dΩ
= |f20|2 + 2 |f22(q)|2. (16)

2. COMPARISON WITH EXPERIMENTAL DATA. SUMMARY

When calculating the elastic and inelastic scattering amplitudes one has to take into account
the Coulomb distortion of the straight-ahead trajectory situated in expressions of the high-
energy theory. This is made by exchanging, in the nuclear part of the phases Φ0(b) and
Φint(b), the impact parameter b by the distance of the turning point in the Coulomb ˇeld of
the point charge, i.e., b ⇒ bc = ā +

√
b2 + ā2, where ā = Z1Z2e

2/�vk is a half of closest
approach distance at b = 0.

Firstly, we estimate inelastic cross sections of scattering of 17O on different nuclei without
introducing any free parameters. To this end, we apply semimicroscopic optical potentials
U = NrV

DF + iNimV DF calculated and adjusted in [8] to the experimental data on elastic

scattering of the same nuclei [9]. The deformation parameters β
(n)
2 and β

(c)
2 for nuclear

and Coulomb potentials, separately, were suggested to obey the relation β
(c)
2 R̄C = β

(n)
2 R̄n,

where R̄ are rms radii. Qualitatively, this relation supposes an equality of areas of rings on

the r plane, where the main transition takes place. The β
(c)
2 deformations are taken as they

were extracted in [9] using the known reduced electric transition probabilities B(E2 ↑) in the
target nuclei. (For parameters see set 1 in the table.)

Figure 3 shows these results by dashed lines. We see that the calculations performed
without free parameters are in a qualitative agreement with the experimental data. The slopes
of all curves are in coincidence with the behavior of the data. As to the absolute values of
cross sections, they can be slightly improved by increasing the deformation parameters. An
exception is seen at small angles (very peripheral collisions) for heavy nuclei 120Sn, 208Pb
(large charges), where the multistep Coulomb excitation must give large contribution while
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Deformation parameters of the Coulomb and nuclear potentials

β2
17O + 60Ni 17O + 90Zr 17O + 120Sn 17O + 208Pb

Set 1
β

(c)
2 0.2067 0.091 0.1075 0.0544

β
(n)
2 0.2453 0.1072 0.1270 0.0644

Set 2
β

(c)
2 0.2067 0.091 0.1075 0.0544

β
(n)
2 0.4 0.16 0.25 0.1

Fig. 3. Microscopic calculations of inelastic scattering differential cross sections of the 17O heavy ions

at 1435 MeV on different target nuclei with excitations of 2+ collective states. Dashed curves are for
the consistent deformation parameters of the nuclear and Coulomb potentials (set 1 in the table), solid

curves Å with the free β
(n)
2 parameters (set 2). The data are from [9]

in our consideration we take into account only the ˇrst power terms of deformations β in
amplitudes.

Meanwhile, if we refuse to fulˇll the above relation between β
(c)
2 and β

(n)
2 , and suppose

the deformation of nuclear potential β
(n)
2 to be free parameter (solid curves), then agreements
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with the data become fairly better as compared to the preceding calculations. (For parameters
see set 2 in the table.)

Summarizing the obtained results, we note that, ˇrst, the outlook for the further work in
utilizing (semi)microscopic potentials, both the real and the imaginary one, for parametrization
and analysis of experimental data is rather attractive. Their applications do not need to
introduce so many parameters as they included in the case of phenomenological potentials.

Second, our consideration was based on the simple adiabatic approximation and utilizing
only the linear terms, in β2, of the scattering amplitude. But these potentials can also be
applied in the more proper coupled channel method where, in principle, all powers of terms
with β2 are taken into account. By the way, the prospects also exist of improving the suggested
approach by constructing the microscopic transition potentials rather than that obtained above
from the microscopic potentials themselves.
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