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ON THE LORENTZ GROUP S0O(3,1), GEOMETRICAL
SUPERSYMMETRIC ACTION FOR PARTICLES, AND
SQUARE ROOT OPERATORS

D. J. Cirilo-Lombardo'

Joint Institute for Nuclear Research, Dubna

In this work the problem of the square root quantum operators is analyzed from the theoretical
group point of view. To this end, we considered the relativistic geometrical action of a particle in the
superspace in order to quantize it and to obtain the spectrum of physical states with the Hamiltonian
remaining in the natural square root form. The generators of group SO(3,1) are introduced and the
quantization of this model is performed completely. The obtained spectrum of physical states and
the Fock construction for the physical states from the Hamiltonian operator in square root form was
proposed, explicitly constructed and compared with the spectrum and Fock construction obtained from
the Hamiltonian in the standard form (i.e., quadratic in momenta). We show that the only states
that the square root Hamiltonian can operate with correspond to the representations with the lowest
weights A = 1/4 and A = 3/4 with four possible (nontrivial) fractional representations for the group
decomposition of the spin structure.

C TOYKM 3peHHs TeOPeTHYeCKOro IPYyHIIOBOrO MOAXOH H JIM3UpyeTcs MpobiaeM orep TOpPOB KB -
Ip THOTO KOpHs. IIJIsl 3TOro Mel p CCM TPHUB €M PENSTUBHCTCKOE TeOMETpUYECcKoe AeHCTBUE UIS Y CTULIbI
B CyHEpIIPOCTp HCTBE, IPOBOANM €€ KB HTOB HHE U IOJIyd €M CIEKTpP (PU3MYECKUX COCTOSHHN C T MUIIb-
TOHM HOM, COXP HSIOIIIM €CTECTBEHHOE MPEACT BIEHHE Yepe3 KB JIp THbIe KOPHU. BBOIATCS reHep TOpEI
rpyrmsl SO(3, 1), ¥ KB HTOB HHE MOJIENH TONHOCTBIO 3 BepIl ercsl. [IoMydeH Bl CIIeKTp (pU3MYeCKuX
COCTOSIHUN U (POKOBCKOE MOCTpOeHUE (PU3MUECKUX COCTOSIHUU U3 oniep Top [ MUIBTOH Yepe3 KB Ap T-
Hble KOPHH Cp BHHUB I0TCSI C (DOKOBCKHM ITOCTPOEHHMEM M3 T MIJIBTOHHM H B CT HI PTHOH dopme (T.e.
KB Jp THYHOTO MO UMIYJIbC M). oK 3 HO, YTO TONBKO COCTOSIHHSI, C KOTOPBIMH MOXHO OINEPHPOB Th
B I' MIJIBTOHH He, BBIP XEHHOM 4epe3 KB Jp THbIE KOPHHU, COOTBETCTBYIOT MPEICT BICHUSIM C HU3IINMH
Bec ME A = 1/4 u A = 3/4 ¢ 4eThIpbMsI BO3MOXHBIMH APOOHBIMH MPEACT BICHHSMH JUTS [PYIIIOBOTO
P 37OXEHHs! CIIHOBOH CTPYKTYPBIL.

INTRODUCTION AND SUMMARY

The problem of the square root operator in theoretical physics, in particular in Quantum
Mechanics and QFT is well known [6]. Several attempts to avoid the problem of locality and
quantum interpretation of Hamiltonian as a square root operator were described in the liter-
ature: pseudodifferential operators, several expansions of the fractional-exponential operator,
etc. [5]. The main characteristic of all these attempts is to eliminate the square root of the
Hamiltonian. In this manner, the set of operators into the square root operates freely on the
physical states, paying the price to lose locality and quantum interpretation of the spectrum
of a well-formulated field theory.
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Recently [15-17], several works have appeared where the problem of the quantization
procedure and the square root operators was carefully analyzed. In these papers it was
demonstrated for different simple problems (harmonic oscillator, massive particle on hyper-
boloid, etc.) that the spectrum changes drastically if the Hamiltonian operator has the square
root form or does not: the explicit computation of the Casimir operator of the symmetry
group puts this difference in evidence.

In this work, strongly motivated for the several fundamental reasons described above, we
considered the simple model of superparticle of Volkov and Pashnev [1], that is type G4 in
the description of Casalbuoni [2,3], in order to quantize it and to obtain the spectrum of
physical states with the Hamiltonian remaining in the natural square root form. To this end,
we used the Hamiltonian formulation described by Lanczos in [7] and the inhomogeneous
Lorentz group as a representation for the obtained physical states [12—-14]. The quantization
of this model is performed completely and the obtained spectrum of physical states, with the
Hamiltonian operator in its square root form, is compared with the spectrum obtained with
the Hamiltonian in the standard form (i.e., quadratic in momenta). We show that the only
states that the square root Hamiltonian can operate with correspond to the representations
with the lowest weights A\; 2 = 1/4 and A\ 2 = 3/4. In this manner, we also show that the
superparticle relativistic actions as of Ref. [1] are a good geometrical and natural candidate
to describe quartionic states [9-11] (semions). The plan of this paper is as follows: in
order to make this work self-contained, in Secs. 1, 2, and 3 we borrow from reference [18]
the geometrical description, the Hamiltonian treatment and quantization of the superparticle
model. Section 4 is describes the process of quantization and the obtaining of the mass
spectrum of the superparticle model under consideration; and finally, some conclusions and
remarks are given.

1. THE SUPERPARTICLE MODEL

In the superspace the coordinates are given not only by the spacetime x,, coordinates, but
also for anticommuting spinors 0% and §”. The resulting metric [1,4, 18] must be invariant
to the action of the Poincare group, and also invariant to the supersymmetry transformations:
B

€ (0,8 )i 0 =0t BT

xit =2, +1 (90‘ (a)aﬁé

The simplest super-interval that obeys the requirements of invariance given above is the
following:

ds® = whw, + aw®w, — a*wwy, (1)

where (to simplify notation from here we avoid the contracted indexes between the spin-

tensors (U)a 3 and the anticommuting spinors 8¢ and 7", as usual)

wy =dzx, —i(d0 0,0 —0 0,dh); w*=do%; w*= 9"

are the Cartan forms of the group of supersymmetry [4].
The spinorial indexes are related as follows:

0% = 50‘59[3; 0, = 955;3&; EaB = —E€Ba; e = _gha gy =el2=1
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and in an analogous manner for the spinors with punctuated indexes. The complex constants
a and a* in the line element (1) are arbitrary. This arbitrarity for the choice of a and a* are
constrained by the invariance and reality of the interval (1).

As we have extended our manifold to include fermionic coordinates, it is natural to extend
also the concept of trajectory of point particle to the superspace. To do this, we take the

coordinates z (), 0 () and 8" () depending on the evolution parameter 7. Geometrically,
the function action that will describe the world-line of the superparticle is

T2 A T2
S = —m/dT\/JH(;“ + aéaéa —a*f 0, = /dTL (33,9,5) , 2)
71 T1

where W, = &, — i (9 0,0 —6 a,ﬂ) and the upper point means derivative with respect to

the parameter 7, as usual.
The momenta, canonically conjugated to the coordinates of the superparticle, are

P, =0L/0z" = (m*/L) W,

Po = OL/00% = i, (") , 0 + (m®a/L) b, 3)

Py =0LI00" = iP,0° (o), — (m2a/L)B,.
It is difficult to study this system in the Hamiltonian formalism framework because of the
constraints and the nullification of the Hamiltonian. As the action (2) is invariant under
reparametrizations of the evolution parameter

T—F=f(r),

one way to overcome this difficulty is to make the dynamic variable xy the time. For this,

it is sufficient to use the chain rule of derivatives (with special care of the anticommuting
variables)! and to write the action in the form

T2 :
S=-m / dodry| [1— W9 — [2% — Wi]* + i (ae'aa'a - a*éﬁ‘*),
T1

where the W/, was defined by

_OF

'We take the Berezin convention for the Grassmannian derivatives: §F (0) = %69.
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whence ¢ (7) turns out to be the evolution parameter

o(T2) .
S=-m / dxo\/[l - iWV%]2 — [z% — VVfO]2 +af 0, — a0 0, = /dxoL.

Io(Tl)

Physically, this parameter (we call it the dynamical parameter) is the time measured by an
observer’s clock in the rest frame.

Therefore, the invariance of a theory with respect to the invariance of the coordinate
evolution parameter means that one of the dynamic variables of the theory (zo (7) in this
case) becomes the observed time with the corresponding nonzero Hamiltonian

. . . 1 1
H="7P,i" + 1%, + 1%, — L = \/m2 - (Pﬂ?z + T, — a—*HaHd>, )

where i
Iy = Po +1 Py (a“)(wﬁ ,

I, =Py — ipuea (Uﬂ)aa :

That gives the well-known mass shell condition and losing, from the quantum point of view,
the operability of the Hamiltonian.

In the work [1], where this type of superparticle action was explicitly presented, the
problem of nullification of Hamiltonian was avoided in the standard form. This means that
the analog to a mass shell condition (4) in superspace was introduced by means of a multiplier
(einbein) to obtain a new Hamiltonian

H=

MIN

{m — PP’ — (Pﬂﬂ‘ + %Hana - ;—*Hdﬂa> } : ®)

With this Hamiltonian it is clear that in order to perform the quantization of the superparticle
the problems dissapear: Py is restored into the new Hamiltonian, and the square root is
eliminated. The full spectrum from this Hamiltonian was obtained in [1] where the quantum
Hamiltonian referred to the center of mass was

23/2 \p

Hep =m? — M? +
|al

[1 _ (JO)QBEBSQ 6 )

with the mass distribution of the physical states being the following: two scalar supermultiplets

21/2 91/2
+ 4 / + m? and Moy = , / a | —; and one vector supermultiplet

=m. The Fock constructlon in the center of mass for Eq (6a) (Hamiltonian quadratic in
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momenta) consists of the following vectors:

Sl = |0> eth, Ela = E(x ‘0> eth7 Pl = Eﬁaﬁ ‘0> ei]\lt7
Hoa = §d |O> eth7 Vaﬁ = Edgé ‘O> eth’ S5 = EQEBE. ‘0> eth’
. (6b)
Py, = gdgd 10) oMt Sae = Edgﬂg@ 10) oMt

S, = Eﬁabgdgd 10y eiM¢

where operators s, and d,, acting on the vacuum give zero: s, |0) = d, [0) = 0.
We will show in this work that it is possible, in order to quantize the superparticle action,
to remain the Hamiltonian in the square root form. As is very obvious, in the form of square

root the Hamiltonian operator is not linearly proportional with the operator n, = 5°s®. The
Fock construction for the Hamiltonian into the square root form agrees formally with the
description given above for Ref. [1], but the operability of this Hamiltonian is over basic
states with lowest helicities A = 1/4,3/4. This means that the superparticle Hamiltonian
preserving the square root form operates over physical states of particles with fractionary
quantum statistics and fractional spin (quartions).

2. HAMILTONIAN TREATMENT IN LANCZO’S FORMULATION

In order to solve our problem from the dynamical and quantum mechanical point of view,
we will use the formulation given in [7,8]. This Hamiltonian formulation for dynamical
systems was proposed by C. Lanczos and allows us to preserve the square root form in the
new Hamiltonian. We start from expression (4)

1 1
H= \/m2 - (PiPZ + —IIeTl, — —*HaHd>
a a

if
dt dz” q
== =g(Po. P T, Ty, w0, @i, 0o, B,)

with the arbitrary function g given by

\/m2 = PP — (PP +1/alleTl, — 1/a*TI4TI,,)

g , @)

\m2 = (PP +1/alleTl, — 1/a*TITI,) + P

the new Hamiltonian H takes the required «square root» form

1 1
H=g(H+Py) = \/m2 — PyPO — (Pﬂ?l + IO, — EHQHQ), (8)
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where we shall set H = 0 (now depending on 2n + 2 canonical variables), and the variable
Py is clearly identificated by the dynamical expression

aPo . OH APy OH
dr 20 dr ot
This means that Py = —H + const.

In order to make an analysis of the dynamics of our problem, we can compute the Poisson
brackets between all the canonical variables and their conjugate momenta [1-3]

€)

Pu= {PM,H}pb =0, (10)
X o 111
0 ={0° M}y, =~ (1)
o (g 11
7 :{9 ,H} -1 (12)
b a* 'H
. 1 A -8 i, :
x, = {xu,H}pb = {Pu + p II (UM)QBG + a—*ﬁ (Uu)agﬂﬁ} , (13)
M, = (I, H} , = —2 P 117 14
o — { lo%) }pb - ﬁ aﬁ 9 ( )
: —2i
H.:{H., } - Z'sp, 15
a @ H pb aH Pﬁa (15)
where P 5= P, (a“)a 5 From the above expressions the set of classical equations to solve
is easily seen:
. 4 2 .
I, = - (=) L. (16)
lal” H?
. 4 2 .
I =-— 2L I1,,. a7
“ lal” H?
2
Assigning 2—7'[2 = w? and having account for 11} = —II., the solution to equations (16)
a

and (17) takes the form

Ha _ ga ein + N efiu.)‘r7
4 - (18)
I = _ﬁd eWT _ Ed e T

By means of the substitution of the above solutions into (14) and (15), we find the relation

between &, and 7,:
2 =6
Mo = (a*Hw) Pait -

From Egs. (18) and above we obtain

Hazfaeiww( ) P € e, (19)

a*Hw
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aHw

where we used the fact that the constant two-component spinors &, verify Ed = £F. Integrat-
ing expressions (11) and (12), we obtain explicitly the following:

2 ) — )
Ha = — ( ) é‘ﬂ’])ﬂa eZLUT _ é‘a e—’Lu.M" (20)

o [ TWT 2 _B —iWwT
ea - Coc aHw |:£ae a*Hw Paﬂg € :| ’ (21)
— — 7 2 . — .
= o B  alwT e wT
b, =¢;,+ THo [ THo Pgaem +& e ] , (22)

where (, and Zd = (¢ are two-component constant spinors.
Analogically, from expression (13), we obtain x,, in an explicit form

1
H

Ty = dqu —

P L (60,8 o [ (€00) + = 7 (8)| +
P,

2p?

+ [casaei”—fage—m]. (23)
3. QUANTIZATION

Because of the correspondence between classical and quantum dynamics, the Poisson
brackets between coordinates and canonical impulses are transformed into quantum commu-
tators and anticommutators

[Tps Pp] =i {xwpﬂ}pb = ~i9uw,
{Qa, Pﬁ} =1 {901’ Pﬁ}pb = _2557 (24)

{ad,P.}zi{ad,P} = —is®
3 C RS 3

and the new Hamiltonian (8) operates quantically as follows:

\/mQ — PyPO — (Pﬂ?i + %Hana — al—*HdHa> W) =0, (25)

where |U) are the physical states. From the (anti)commutation relations (24) it is possible to
obtain easily the commutators between the variables &a, &, Ca, C s qus Py

{ot) =P {0t} =~ (g) P @PI=—ige 00

To obtain the physical spectrum we use the relations given by (26) into (25) and the Hamil-
tonian H takes the following form:

93/2 (P, 93/2 3

- ap 7.
A jamr et

H= \/m2 —PoPO — PPt — 27)
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Passing to the center of mass of the system, and defining new operators s, = (1/vV M)&,,

5, = (1/VM)E,, do = V2MCa, di, = V2M(,,, where M = Py, Hem is

23/2 M
lal

Hem = \/mQ — M2+ |:1 — ((’)’0)0‘,{-3 E’BSO‘:|, (28)

with
{05, } == 00)ass  {dard, } = = (00)0s (29)

being the anticommutation relations of the operators s,,5,, da, Ed. Now the question
is: how does the square-root H Hamiltonian given by expression (28) operate on a given
physical state? The problem of locality and interpretation of the operator like (25) is very
well known. Several attemps to avoid these problems were given in the literature [5,6]:
pseudodifferential operators, several expansions of the fractional-exponential operator, etc.
The main characteristic of all these attempts is to eliminate the square root of the Hamiltonian.
In this manner, the set of operators into the square root operates freely on the physical states,
paying the price to lose locality and quantum interpretation of the spectrum of a well-possessed
field theory.

Our plan is to take the square root to a bispinor in order to introduce the physical state
into the square root Hamiltonian. In the next section, we will perform the square root of a
bispinor and obtain the mass spectrum given by the Hamiltonian .

4. MASS SPECTRUM AND SQUARE ROOT OF A BISPINOR

The square root from a spinor was extracted in 1965 by S.S. Sannikov from Kharkov
(Ukraine) [13] and the analysis of the structure of the Hilbert space containing such «square
root» states was worked out by E. C. G. Sudarshan, N. Mukunda and C. C. Chiang in 1981 [21].
Taking the square root from a spinor was performed also by P. A. M. Dirac [14] in 1971.

We know that the group SL(2,C) is locally isomorphous to SO(3,1), and SL (2, R) is
locally isomorphous to SO(2, 1). For instance, the generators of the group SO(3, 1) for our
case can be constructed from the usual operators a, a™ (or ¢ and p) in the following manner.
We start from an irreducible unitary infinite dimensional representation of the Heisenberg—
Weyl group, which is realized in the Fock spaces of states of one-dimensional quantum
oscillator [10-12]. Creation operators and annihilation operators of these states obey the
conventional commutation relations [a™,a] = 1, [a,a] = [aT,a™] = 0. To describe this
representation to the Lorentz group, one may also use the coordinate-momentum realization
(q,p = —z%) of the Heisenberg algebra, which relates to the a,a™ realization by the

formulas

q—ip L q+tip
= 5 a = 5 30
V2 0

V2
as usual. Let us introduce the spinors

_( ax [ a2
() s (i) Y

a
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The commutation relations take the form
(Lo, Lg] = icap: [Ld,LB] =ic_; [Ld,LB] —0. (32)

The generators of SL(2,C) are easily constructed [11] from L, and La

, : 1
Sap = i51:(0")ap = {La, Lg},

33
) (33)

S, =iSul0) = Z{LQ,LB},

where the index ¢ = 1,2, 3 and the six vectors S,; (a,b=1,2;a # b), characteristics of the
representation of SL(2,C) ~ SO(3, 1), satisfy the commutation relations

[Sais Saj] = —igijiSE;s  [Sbir Soj] = —ieijuSt;  [Sair Sp;] = 0. (34)

Notice that the above construction obeys the described decomposition of SL(2,C) = SO(3,1).
Then the quantities

O, = (V| Lo |V), @ =(T|L.|T) (35)

are the two-components of a bispinor

o=(9efe)- (5 ).

~ N ] —
where we define |¥) = ||§>> ) Notice that [¥) and |¥) are the square roots of each
component of this bispinor and can have the same form (given the isomorphism between the
generators L, and Ld), which is very easy to verify. In terms of g the basic vectors of the

representation can be written as [10, 12, 13]

(@ |n) = ¢n(q) =7 V@) H, (q) e /2, (36)

/ dqer, (q) en (q) = dmn (37)

(where H,,(q) are the Hermite polynomials) and form a unitary representation of SO (3,1),
and

In) = (n!)"/% (a*)" |0) (38)
are the normalized basic states where the vacuum vector is annihilated by a. The Casimir
operator, that is S,;S?, has the eigenvalue A(A — 1) = —3/16 (for each subgroup 150(2,1)
given by Egs. (33)) and indeed corresponds to the representations with the lowest weights

A= 1/4and A = 3/4. The wave functions which transform as linear irreducible representation
of 150(2,1), subgroup of I50(3,1) generated by operators (33) are

+oo
Uy (2,0,9) = > for (,60) 0o (q), (39
k=0
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“+o0
Us4(2,0,9) = fort (2,60) p2ut1 (q) (40)
k=0
(analogically for the Wy /4 and W, /4 states with contrary helicity). We can easily see that the

Hamiltonian H (28) operates over the states \@), which enter into H as its square ®, and
®,. It is natural to associate, up to a proportional factor, the spinors dq and d . with

do = (®174), = (Y 1/a| La [Crya),  d, — (Prja), = (Pija| L, [Pr/a), (41)

and in a similar manner, the spinors s, and Ed with

Sa = (P3/4) , = (Yoja| La [Ts/a) s 5, = (Paja), = (Vaja| L, [Taya).  (42)
The relations (41) and (42) give a natural link between the spinors &, (Ea) and (o (Za ,
solutions of the dynamical problem, with the only physical states that can operate freely with
the Hamiltonian : the «square root» states |¥), ') from the bispinor ®. Notice that there
are four (nontrivial) representations for the group decomposition of the bispinor ®, as follows:

o= (37) = /400 0.3/,

o= (F )~ G0 0.1/,

%=<%Z>Hﬂ%®®&ﬂ%

Dy = ( a4 ) — (3/4,0)® (0,3/4).
D3/4

This result is a consequence of the geometrical Hamiltonian taken in its natural square root
form and the Sannikov-Dirac oscillator representation for the generators of the Lorentz group
SO(3,1).

Commutation relations (29) obey the Clifford algebra for spinorial creation—annihilation
operators. In this manner, the square roots of the operators s, and d, in the representation
given by the associations (41) and (42) acting on the vacuum give zero, symbolically:

VSa — (@3/4)a \0> =V, 3/4 |0> =0,

a 1/4) = r1/4 =Y
Vo (®1/4) [0) =T 0y =0

where we introduce 7, s,t... latin indexes to design the fractionary spin states. The Fock
construction in the center of mass of the system consists now, in contrast to the construction
(6b), of the following vectors:

§1 = \0> eth/2’ =iy = @T 1/4 ‘0> eth/2’ }31 _ @1/4§r " ‘0> eth/2,
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Eor = Er 3/4 0) eth/Q, Vis = Wr 3/439 1/4 0) eth/Q,
Zs =V, 3/4Ti/4$5 1/410) M2,
(43)
132 = 62/4$r 3/4 |0> eth/27 Eyr = ﬁr 1/4§§/4§s 3/4 ‘0> eth/27

~ .y s — A
Sy =149, 1743, U, 574 [0) M1/2,
Notice that the vectors given above are the only states that can operate into the square

root operator given by expression (28), and not that constructed directly with the operators
Sq and d,. Schematically, we have, e.g., for Z4,, the following operability:

23/2M z = —Ss = ;
\/m2 — M2+ al [1 - (Uo)aﬁ§ﬁsa] Woo1/aVs0 Vs 374 |0) M2 =

23/2M : = 4
— 2 2 _ _—5 « <B= Mt
= \/{m M2+ al [1 (UO)QBS 5 H d’.ys 5, |0) etM?,

From expression (38) and taking into account that the number operator is 5°s* = n,, because

5% and s work as creation—annihilation operators, we can easily obtain the mass for the
different «square root» or fractionary supermultiplets:

21/2 [ 2 N ~
)ns=0— M; = —W + W + m2; fractionary supermultiplet I: (Sl,Elr,Pl);
a

il) ny = 1 — M = m; fractionary supermultiplet IT: (Zs,., V;.s, E3,);

[ 2 21/2 ~ N
i) ng = 2 — My = W +m? + W; fractionary supermultiplet III: (Pg, Zar, Sg).
a a

We emphasize now that the computations and algebraic manipulations given above were
made with Ed — (P4 /4)a and 5. — (3 /4)d (the square of the true states) into the square
root Hamiltonian. That means that the physical states are constrained by the the explicit form
of the Hamiltonian operator. Notice from expressions (35), (41) and (42) that the physical
states for the Hamiltonian in the square root form are one half the number of physical states
for the Hamiltonian quadratic in momenta.

Another important point is that the link between the new Hamiltonian H given by expres-
sion (8) and the relativistic Schrodinger equation (e.g., Ref. [20]) can be given through the
relation between the conserved currents of the fermionic «square» states and the parastates.
This important issue will be analyzed elsewhere [19].

It is interesting to note that the arbitrary c-parameters a and a* generate a deformation of
the usual line element for a superparticle in proper time, and this deformation is responsible,
in any meaning, for the multiplets given above. This is not a casuality: one can easily see
how the quantum Hamiltonian (28) is modified in the center of mass of the system by the
c-parameters a and a*. The implicancies of this type of superparticle actions with deformations
of the quantization will be analyzed in a future paper [19].
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CONCLUSIONS

In this work the problem of the square root quantum operators was analyzed considering
the simple model of superparticle of Volkov and Pashnev [1]. The quantization of this
model was performed completely and the obtained spectrum of physical states, with the
Hamiltonian operator in its square root form, was compared with the spectrum obtained with
the Hamiltonian in the standard form (i.e., quadratic in momenta). To this end, we used the
Hamiltonian formulation described by Lanczos in [7] and the inhomogeneous Lorentz group
as a representation for the obtained physical states [12—14] without any other manipulation like
the usual quantum equations from the mathematical or operatorial point of view. The Fock
construction for these fractionary or «square root states» was proposed, explicitly constructed
and compared with the Fock construction given in the reference [1] for the superparticle
model with the Hamiltonian in standard form. We have shown that, in contrast to [1], the
only states that the square root Hamiltonian can operate correspond to the representations with
the lowest weights A = 1/4 and A = 3/4.

Also we show that there are four possible (nontrivial) fractional representations for the
group decomposition of the spin structure from the square root Hamiltonian, instead of
(172, 0) and (0, 1/2) as in the case when the Hamiltonian is quadratic in momentum (e.g.,
Ref. [1]). This result is a consequence of the geometrical Hamiltonian taken in its natural
square root form and the Sannikov-Dirac oscillator representation for the generators of the
Lorentz group SO(3,1).

For instance, we conclude that quantically it is not the same to operate with the square
root Hamiltonian as that with its square or other power of this operator; the main problem is
that the group theoretical description for the states under which the Hamiltonian operates is
sensible to the power of such a Hamiltonian. It is interesting to see that the results presented
here for the superparticle are in complete agreement with the results, symmetry group and
discussions for nonsupersymmetric examples given in Ref. [15-17]; and seeing that the lowest
weights of the states under the square root Hamiltonian can operate, and because no concrete
action is known to describe particles with fractionary statistics, superparticle relativistic actions
as of [1] can be good geometrical and natural candidates to describe quartionic states [9—12]
(semions).
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