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ON THE LORENTZ GROUP SO(3, 1), GEOMETRICAL
SUPERSYMMETRIC ACTION FOR PARTICLES, AND

SQUARE ROOT OPERATORS

D. J. Cirilo-Lombardo1

Joint Institute for Nuclear Research, Dubna

In this work the problem of the square root quantum operators is analyzed from the theoretical
group point of view. To this end, we considered the relativistic geometrical action of a particle in the
superspace in order to quantize it and to obtain the spectrum of physical states with the Hamiltonian
remaining in the natural square root form. The generators of group SO(3, 1) are introduced and the
quantization of this model is performed completely. The obtained spectrum of physical states and
the Fock construction for the physical states from the Hamiltonian operator in square root form was
proposed, explicitly constructed and compared with the spectrum and Fock construction obtained from
the Hamiltonian in the standard form (i.e., quadratic in momenta). We show that the only states
that the square root Hamiltonian can operate with correspond to the representations with the lowest
weights λ = 1/4 and λ = 3/4 with four possible (nontrivial) fractional representations for the group
decomposition of the spin structure.

‘ ÉμÎ±¨ §·¥´¨Ö É¥μ·¥É¨Î¥¸±μ£μ £·Ê¶¶μ¢μ£μ ¶μ¤Ìμ¤   ´ ²¨§¨·Ê¥É¸Ö ¶·μ¡²¥³  μ¶¥· Éμ·μ¢ ±¢ -
¤· É´μ£μ ±μ·´Ö. „²Ö ÔÉμ£μ ³Ò · ¸¸³ É·¨¢ ¥³ ·¥²ÖÉ¨¢¨¸É¸±μ¥ £¥μ³¥É·¨Î¥¸±μ¥ ¤¥°¸É¢¨¥ ¤²Ö Î ¸É¨ÍÒ
¢ ¸Ê¶¥·¶·μ¸É· ´¸É¢¥, ¶·μ¢μ¤¨³ ¥¥ ±¢ ´Éμ¢ ´¨¥ ¨ ¶μ²ÊÎ ¥³ ¸¶¥±É· Ë¨§¨Î¥¸±¨Ì ¸μ¸ÉμÖ´¨° ¸ £ ³¨²Ó-
Éμ´¨ ´μ³, ¸μÌ· ´ÖÕÐ¨³ ¥¸É¥¸É¢¥´´μ¥ ¶·¥¤¸É ¢²¥´¨¥ Î¥·¥§ ±¢ ¤· É´Ò¥ ±μ·´¨. ‚¢μ¤ÖÉ¸Ö £¥´¥· Éμ·Ò
£·Ê¶¶Ò SO(3, 1), ¨ ±¢ ´Éμ¢ ´¨¥ ³μ¤¥²¨ ¶μ²´μ¸ÉÓÕ § ¢¥·Ï ¥É¸Ö. �μ²ÊÎ¥´´Ò° ¸¶¥±É· Ë¨§¨Î¥¸±¨Ì
¸μ¸ÉμÖ´¨° ¨ Ëμ±μ¢¸±μ¥ ¶μ¸É·μ¥´¨¥ Ë¨§¨Î¥¸±¨Ì ¸μ¸ÉμÖ´¨° ¨§ μ¶¥· Éμ·  ƒ ³¨²ÓÉμ´  Î¥·¥§ ±¢ ¤· É-
´Ò¥ ±μ·´¨ ¸· ¢´¨¢ ÕÉ¸Ö ¸ Ëμ±μ¢¸±¨³ ¶μ¸É·μ¥´¨¥³ ¨§ £ ³¨²ÓÉμ´¨ ´  ¢ ¸É ´¤ ·É´μ° Ëμ·³¥ (É. ¥.
±¢ ¤· É¨Î´μ£μ ¶μ ¨³¶Ê²Ó¸ ³). �μ± § ´μ, ÎÉμ Éμ²Ó±μ ¸μ¸ÉμÖ´¨Ö, ¸ ±μÉμ·Ò³¨ ³μ¦´μ μ¶¥·¨·μ¢ ÉÓ
¢ £ ³¨²ÓÉμ´¨ ´¥, ¢Ò· ¦¥´´μ³ Î¥·¥§ ±¢ ¤· É´Ò¥ ±μ·´¨, ¸μμÉ¢¥É¸É¢ÊÕÉ ¶·¥¤¸É ¢²¥´¨Ö³ ¸ ´¨§Ï¨³¨
¢¥¸ ³¨ λ = 1/4 ¨ λ = 3/4 ¸ Î¥ÉÒ·Ó³Ö ¢μ§³μ¦´Ò³¨ ¤·μ¡´Ò³¨ ¶·¥¤¸É ¢²¥´¨Ö³¨ ¤²Ö £·Ê¶¶μ¢μ£μ
· §²μ¦¥´¨Ö ¸¶¨´μ¢μ° ¸É·Ê±ÉÊ·Ò.

INTRODUCTION AND SUMMARY

The problem of the square root operator in theoretical physics, in particular in Quantum
Mechanics and QFT is well known [6]. Several attempts to avoid the problem of locality and
quantum interpretation of Hamiltonian as a square root operator were described in the liter-
ature: pseudodifferential operators, several expansions of the fractional-exponential operator,
etc. [5]. The main characteristic of all these attempts is to eliminate the square root of the
Hamiltonian. In this manner, the set of operators into the square root operates freely on the
physical states, paying the price to lose locality and quantum interpretation of the spectrum
of a well-formulated ˇeld theory.

1E-mails: diego@thsun1.jinr.ru; diego77jcl@yahoo.com
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Recently [15Ä17], several works have appeared where the problem of the quantization
procedure and the square root operators was carefully analyzed. In these papers it was
demonstrated for different simple problems (harmonic oscillator, massive particle on hyper-
boloid, etc.) that the spectrum changes drastically if the Hamiltonian operator has the square
root form or does not: the explicit computation of the Casimir operator of the symmetry
group puts this difference in evidence.

In this work, strongly motivated for the several fundamental reasons described above, we
considered the simple model of superparticle of Volkov and Pashnev [1], that is type G4 in
the description of Casalbuoni [2, 3], in order to quantize it and to obtain the spectrum of
physical states with the Hamiltonian remaining in the natural square root form. To this end,
we used the Hamiltonian formulation described by Lanczos in [7] and the inhomogeneous
Lorentz group as a representation for the obtained physical states [12Ä14]. The quantization
of this model is performed completely and the obtained spectrum of physical states, with the
Hamiltonian operator in its square root form, is compared with the spectrum obtained with
the Hamiltonian in the standard form (i.e., quadratic in momenta). We show that the only
states that the square root Hamiltonian can operate with correspond to the representations
with the lowest weights λ1,2 = 1/4 and λ1,2 = 3/4. In this manner, we also show that the
superparticle relativistic actions as of Ref. [1] are a good geometrical and natural candidate
to describe quartionic states [9Ä11] (semions). The plan of this paper is as follows: in
order to make this work self-contained, in Secs. 1, 2, and 3 we borrow from reference [18]
the geometrical description, the Hamiltonian treatment and quantization of the superparticle
model. Section 4 is describes the process of quantization and the obtaining of the mass
spectrum of the superparticle model under consideration; and ˇnally, some conclusions and
remarks are given.

1. THE SUPERPARTICLE MODEL

In the superspace the coordinates are given not only by the spacetime xμ coordinates, but

also for anticommuting spinors θα and θ
.
α
. The resulting metric [1, 4, 18] must be invariant

to the action of the Poincare group, and also invariant to the supersymmetry transformations:

x′
μ = xμ + i

(
θα (σ)

α
.

β
ξ

.

β − ξα (σ)
α

.

β
θ

.

β
)

; θ′α = θα + ξα; θ′
.
α

= θ
.
α

+ ξ
.
α
.

The simplest super-interval that obeys the requirements of invariance given above is the
following:

ds2 = ωμωμ + aωαωα − a∗ω
.
αω .

α, (1)

where (to simplify notation from here we avoid the contracted indexes between the spin-

tensors (σ)
α

.

β
and the anticommuting spinors θα and θ

.
α
, as usual)

ωμ = dxμ − i
(
dθ σμθ − θ σμdθ

)
; ωα = dθα; ω

.
α = dθ

.
α

are the Cartan forms of the group of supersymmetry [4].
The spinorial indexes are related as follows:

θα = εαβθβ ; θα = θβεβα; εαβ = −εβα; εαβ = −εβα; ε12 = ε12 = 1
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and in an analogous manner for the spinors with punctuated indexes. The complex constants
a and a∗ in the line element (1) are arbitrary. This arbitrarity for the choice of a and a∗ are
constrained by the invariance and reality of the interval (1).

As we have extended our manifold to include fermionic coordinates, it is natural to extend
also the concept of trajectory of point particle to the superspace. To do this, we take the

coordinates x (τ), θ (τ) and θ
.
α

(τ) depending on the evolution parameter τ. Geometrically,
the function action that will describe the world-line of the superparticle is

S = −m

τ2∫
τ1

dτ

√
◦

ωμ

◦
ωμ + a

.

θ
α .

θα − a∗
.

θ

.
α .

θ .
α =

τ2∫
τ1

dτL
(
x, θ, θ

)
, (2)

where
◦

ωμ =
.
xμ − i

(
.

θ σμθ − θ σμ

.

θ

)
and the upper point means derivative with respect to

the parameter τ , as usual.
The momenta, canonically conjugated to the coordinates of the superparticle, are

Pμ = ∂L/∂xμ =
(
m2/L

) ◦
ωμ,

Pα = ∂L/
.

∂θα = iPμ (σμ)
α

.

β
θ

.

β
+
(
m2a/L

) .

θα, (3)

P .
α = ∂L/

.

∂θ
.
α

= iPμθα (σμ)α
.
α −

(
m2a/L

) .

θ .
α.

It is difˇcult to study this system in the Hamiltonian formalism framework because of the
constraints and the nulliˇcation of the Hamiltonian. As the action (2) is invariant under
reparametrizations of the evolution parameter

τ → τ̃ = f (τ) ,

one way to overcome this difˇculty is to make the dynamic variable x0 the time. For this,
it is sufˇcient to use the chain rule of derivatives (with special care of the anticommuting
variables)1 and to write the action in the form

S = −m

τ2∫
τ1

.
x0dτ

√√√√[
1 − iW 0

,0

]2 − [
xi

,0 − W i
,0

]2 +
.
x
−2
0

(
a

.

θα

.

θα − a∗
.

θ .
α

.

θ
.
α

)
,

where the Wμ
,0 was deˇned by

◦
ω

0
=

.
x

0 [1 − iW 0
,0

]
,

◦
ω

i
=

.
x

0 [
xi

,0 − iW i
,0

]
,

1We take the Berezin convention for the Grassmannian derivatives: δF (θ) =
∂F

∂θ
δθ.
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whence x0 (τ) turns out to be the evolution parameter

S = −m

x0(τ2)∫
x0(τ1)

dx0

√[
1 − iW 0

,0

]2 − [
xi

,0 − W i
,0

]2 + a
.

θ
α .

θα − a∗
.

θ

.
α .

θ .
α ≡

∫
dx0L.

Physically, this parameter (we call it the dynamical parameter) is the time measured by an
observer's clock in the rest frame.

Therefore, the invariance of a theory with respect to the invariance of the coordinate
evolution parameter means that one of the dynamic variables of the theory (x0 (τ) in this
case) becomes the observed time with the corresponding nonzero Hamiltonian

H = Pμ
.
x

μ + Πα
.

θα + Π
.
α

.

θ .
α − L =

√
m2 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
, (4)

where
Πα = Pα + i Pμ (σμ)

α
.

β
θ

.

β
,

Π .
α = P .

α − iPμθα (σμ)α
.
α .

That gives the well-known mass shell condition and losing, from the quantum point of view,
the operability of the Hamiltonian.

In the work [1], where this type of superparticle action was explicitly presented, the
problem of nulliˇcation of Hamiltonian was avoided in the standard form. This means that
the analog to a mass shell condition (4) in superspace was introduced by means of a multiplier
(einbein) to obtain a new Hamiltonian

H =
κ

2

{
m2 − P0P0 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)}
. (5)

With this Hamiltonian it is clear that in order to perform the quantization of the superparticle
the problems dissapear: P0 is restored into the new Hamiltonian, and the square root is
eliminated. The full spectrum from this Hamiltonian was obtained in [1] where the quantum
Hamiltonian referred to the center of mass was

Hcm = m2 − M2 +
23/2M

|a|
[
1 − (σ0)α

.

β
s

.

βsα
]

(6 )

with the mass distribution of the physical states being the following: two scalar supermultiplets

M1s =
21/2

|a| +
√

2
|a| + m2 and M2s =

√
2
|a| + m2 − 21/2

|a| ; and one vector supermultiplet

Mv = m. The Fock construction in the center of mass for Eq. (6a) (Hamiltonian quadratic in
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momenta) consists of the following vectors:

S1 = |0〉 eiMt, Ξ1α = d ·
α
|0〉 eiMt, P1 = d

·
β
d ·

β
|0〉 eiMt,

Ξ2α = s ·
α
|0〉 eiMt, Vαβ = s ·

α
d ·

β
|0〉 eiMt, Ξ3α = s ·

α
d

·
β
d ·

β
|0〉 eiMt,

(6b)

P2 = s
·
αs ·

α
|0〉 eiMt, Ξ4α = d ·

α
s

·
βs ·

β
|0〉 eiMt,

S2 = d

·
β
d ·

β
s

·
αs ·

α
|0〉 eiMt,

where operators sα and dα acting on the vacuum give zero: sα |0〉 = dα |0〉 = 0.
We will show in this work that it is possible, in order to quantize the superparticle action,

to remain the Hamiltonian in the square root form. As is very obvious, in the form of square

root the Hamiltonian operator is not linearly proportional with the operator ns = s
.

βsα. The
Fock construction for the Hamiltonian into the square root form agrees formally with the
description given above for Ref. [1], but the operability of this Hamiltonian is over basic
states with lowest helicities λ = 1/4, 3/4. This means that the superparticle Hamiltonian
preserving the square root form operates over physical states of particles with fractionary
quantum statistics and fractional spin (quartions).

2. HAMILTONIAN TREATMENT IN LANCZO'S FORMULATION

In order to solve our problem from the dynamical and quantum mechanical point of view,
we will use the formulation given in [7, 8]. This Hamiltonian formulation for dynamical
systems was proposed by C. Lanczos and allows us to preserve the square root form in the
new Hamiltonian. We start from expression (4)

H =

√
m2 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
if

dt

dτ
≡ dx0

dτ
= g

(
P0, Pi, Πα, Π .

α, x0, xi, θα, θ .
α

)
with the arbitrary function g given by

g =

√
m2 − P0P0 −

(
PiP i + 1/aΠαΠα − 1/a∗Π

.
αΠ .

α

)√
m2 −

(
PiP i + 1/aΠαΠα − 1/a∗Π

.
αΠ .

α

)
+ P0

, (7)

the new Hamiltonian H takes the required ®square root¯ form

H ≡ g (H + P0) =

√
m2 − P0P0 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
, (8)
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where we shall set H = 0 (now depending on 2n + 2 canonical variables), and the variable
P0 is clearly identiˇcated by the dynamical expression

dP0

dτ
= −g

∂H
∂x0

or
dP0

dτ
= −∂H

∂t
. (9)

This means that P0 = −H + const.
In order to make an analysis of the dynamics of our problem, we can compute the Poisson

brackets between all the canonical variables and their conjugate momenta [1Ä3]

·
Pμ = {Pμ,H}pb = 0, (10)

.

θ
α

= {θα,H}pb =
1
a

Πα

H , (11)

.

θ

·
α

=
{

θ
·
α
,H

}
pb

= − 1
a∗

Π
·
α

H , (12)

·
xμ = {xμ,H}pb =

1
H

{
Pμ +

i

a
Πα(σμ)

α
.

β
θ

.
β

+
i

a∗ θα(σμ)
α

.

β
Π

·
β

}
, (13)

·
Πα = {Πα,H}pb =

2i

a∗HP
α

.

β
Π

·
β , (14)

·
Π ·

α
=
{

Π ·
α
,H

}
pb

=
−2i

aH ΠβPβ
.
α, (15)

where P
α

.

β
≡ Pμ (σμ)

α
.

β
. From the above expressions the set of classical equations to solve

is easily seen:
··
Πα = −

(
4P2

|a|2 H2

)
·
Πα, (16)

··
Π ·

α
= −

(
4P2

|a|2 H2

)
·
Π .

α. (17)

Assigning
4P2

|a|2 H2
≡ ω2 and having account for Π+

α = −Π ·
α
, the solution to equations (16)

and (17) takes the form

Πα = ξα eiωτ + ηα e−iωτ ,

Π ·
α

= −η ·
α

eiωτ − ξ ·
α

e−iωτ .
(18)

By means of the substitution of the above solutions into (14) and (15), we ˇnd the relation
between ξα and ηα:

ηα =
(

2
a∗Hω

)
P

α
.

β
ξ

.

β
.

From Eqs. (18) and above we obtain

Πα = ξα eiωτ +
(

2
a∗Hω

)
P

α
.

β
ξ

.

β
e−iωτ , (19)



On the Lorentz Group SO(3 , 1 ), Geometrical Supersymmetric Action for Particles 129

Π ·
α

= −
(

2
aHω

)
ξβPβ

.
α eiωτ − ξ ·

α
e−iωτ , (20)

where we used the fact that the constant two-component spinors ξα verify ξ ·
α

= ξ+
α . Integrat-

ing expressions (11) and (12), we obtain explicitly the following:

θα = ζα − i

aHω

[
ξα eiωτ − 2

a∗Hω
P

α
.

β
ξ

.

β
e−iωτ

]
, (21)

θ .
α = ζ ·

α
+

i

a∗Hω

[
− 2

aHω
ξβPβ

.
α eiωτ + ξ ·

α
e−iωτ

]
, (22)

where ζα and ζ ·
α

= ζ+
α are two-component constant spinors.

Analogically, from expression (13), we obtain xμ in an explicit form

xμ = qμ − 1
H

[
Pμ − ωH

P2

(
ξσμξ

)]
τ +

1
Hω

[
1
a

eiωτ
(
ξσμζ

)
+

1
a∗ e−iωτ

(
ζσμξ

)]
+

+
Pμ

2P2

[
ζαξα eiωτ − ζ

·
α
ξ ·

α
e−iωτ

]
. (23)

3. QUANTIZATION

Because of the correspondence between classical and quantum dynamics, the Poisson
brackets between coordinates and canonical impulses are transformed into quantum commu-
tators and anticommutators

[xμ,Pμ] = i {xμ,Pμ}pb = −igμν ,

{θα,Pβ} = i {θα,Pβ}pb = −iδα
β , (24){

θ
·
α,P ·

β

}
= i

{
θ

·
α,P ·

β

}
pb

= −iδ
·
α
·
β

and the new Hamiltonian (8) operates quantically as follows:√
m2 − P0P0 −

(
PiP i +

1
a
ΠαΠα − 1

a∗Π
.
αΠ .

α

)
|Ψ〉 = 0, (25)

where |Ψ〉 are the physical states. From the (anti)commutation relations (24) it is possible to
obtain easily the commutators between the variables ξα, ξ ·

α
, ζα, ζ ·

α
, qμ, Pμ{

ξα, ξ ·
α

}
= −Pα

.
α,

{
ζα, ζ ·

α

}
= −

(
1

2P2

)
Pα

.
α, [qμ,Pμ] = −igμν . (26)

To obtain the physical spectrum we use the relations given by (26) into (25) and the Hamil-
tonian H takes the following form:

H =

√
m2 − P0P0 − PiP i − 23/2

√
(Pμ)2

|a| − 23/2

|a|
√

(Pμ)2
ξαP

α
.

β
ξ

.

β
. (27)
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Passing to the center of mass of the system, and deˇning new operators sα = (1/
√

M)ξα,
s .

α = (1/
√

M)ξ .
α, dα =

√
2Mζα, d .

α =
√

2Mζ .
α, where M = P0, Hcm is

Hcm =

√
m2 − M2 +

23/2M

|a|
[
1 − (σ0)α

.

β
s

.

βsα
]
, (28)

with {
sα, s ·

α

}
= − (σ0)α

.
α ,

{
dα, d ·

α

}
= − (σ0)α

.
α (29)

being the anticommutation relations of the operators sα, s .
α, dα, d .

α. Now the question
is: how does the square-root H Hamiltonian given by expression (28) operate on a given
physical state? The problem of locality and interpretation of the operator like (25) is very
well known. Several attemps to avoid these problems were given in the literature [5, 6]:
pseudodifferential operators, several expansions of the fractional-exponential operator, etc.
The main characteristic of all these attempts is to eliminate the square root of the Hamiltonian.
In this manner, the set of operators into the square root operates freely on the physical states,
paying the price to lose locality and quantum interpretation of the spectrum of a well-possessed
ˇeld theory.

Our plan is to take the square root to a bispinor in order to introduce the physical state
into the square root Hamiltonian. In the next section, we will perform the square root of a
bispinor and obtain the mass spectrum given by the Hamiltonian H.

4. MASS SPECTRUM AND SQUARE ROOT OF A BISPINOR

The square root from a spinor was extracted in 1965 by S. S. Sannikov from Kharkov
(Ukraine) [13] and the analysis of the structure of the Hilbert space containing such ®square
root¯ states was worked out by E. C.G. Sudarshan, N.Mukunda and C. C.Chiang in 1981 [21].
Taking the square root from a spinor was performed also by P.A.M. Dirac [14] in 1971.

We know that the group SL(2, C) is locally isomorphous to SO(3, 1), and SL (2, R) is
locally isomorphous to SO(2, 1). For instance, the generators of the group SO(3, 1) for our
case can be constructed from the usual operators a, a+ (or q and p) in the following manner.
We start from an irreducible unitary inˇnite dimensional representation of the HeisenbergÄ
Weyl group, which is realized in the Fock spaces of states of one-dimensional quantum
oscillator [10Ä12]. Creation operators and annihilation operators of these states obey the
conventional commutation relations [a+, a] = 1, [a, a] = [a+, a+] = 0. To describe this
representation to the Lorentz group, one may also use the coordinate-momentum realization(

q, p = −i
∂

∂q

)
of the Heisenberg algebra, which relates to the a, a+ realization by the

formulas

a =
q − ip√

2
, a+ =

q + ip√
2

, (30)

as usual. Let us introduce the spinors

Lα =
(

a1

a+
1

)
, L ·

α
=
(

a2

a+
2

)
. (31)
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The commutation relations take the form

[Lα, Lβ] = iεαβ ;
[
L ·

α
, L ·

β

]
= iε ·

α
·
β
;

[
L ·

α
, Lβ

]
= 0. (32)

The generators of SL(2, C) are easily constructed [11] from Lα and L ·
α

Sαβ ≡ iS1i(σi)αβ =
1
4
{Lα, Lβ} ,

S ·
α

·
β
≡ iS2i(σi) ·

α
·
β

=
1
4

{
L ·

α
, L ·

β

}
,

(33)

where the index i = 1, 2, 3 and the six vectors Sai (a, b = 1, 2; a �= b), characteristics of the
representation of SL(2, C) ≈ SO(3, 1), satisfy the commutation relations

[Sai, Saj ] = −iεijkSk
a ; [Sbi, Sbj ] = −iεijkSk

b ; [Sai, Sbj ] = 0. (34)

Notice that the above construction obeys the described decomposition of SL(2, C) ≈ SO(3, 1).
Then the quantities

Φα ≡ 〈Ψ|Lα |Ψ〉 , Φ ·
α
≡
〈
Ψ
∣∣L ·

α

∣∣Ψ〉 (35)

are the two-components of a bispinor

Φ ≡
〈
Ψ̂
∣∣∣L ∣∣∣Ψ̂〉 =

(
Φα

Φ ·
α

)
,

where we deˇne |Ψ̂〉 ≡
(

|Ψ〉∣∣Ψ〉
)

. Notice that |Ψ〉 and
∣∣Ψ〉 are the square roots of each

component of this bispinor and can have the same form (given the isomorphism between the
generators Lα and L ·

α
), which is very easy to verify. In terms of q the basic vectors of the

representation can be written as [10, 12, 13]

〈q |n〉 = ϕn (q) = π−1/4 (2nn!)−1/2 Hn (q) e−q2/2, (36)∫
dqϕ∗

m (q)ϕn (q) = δmn (37)

(where Hn(q) are the Hermite polynomials) and form a unitary representation of SO (3, 1),
and

|n〉 = (n!)−1/2 (
a+
)n |0〉 (38)

are the normalized basic states where the vacuum vector is annihilated by a. The Casimir
operator, that is SaiS

i
a, has the eigenvalue λ(λ − 1) = −3/16 (for each subgroup ISO(2, 1)

given by Eqs. (33)) and indeed corresponds to the representations with the lowest weights
λ = 1/4 and λ = 3/4. The wave functions which transform as linear irreducible representation
of ISO(2, 1), subgroup of ISO(3, 1) generated by operators (33) are

Ψ1/4 (x, θ, q) =
+∞∑
k=0

f2k (x, θ) ϕ2k (q) , (39)
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Ψ3/4 (x, θ, q) =
+∞∑
k=0

f2k+1 (x, θ) ϕ2k+1 (q) (40)

(analogically for the Ψ1/4 and Ψ3/4 states with contrary helicity). We can easily see that the

Hamiltonian H (28) operates over the states |Ψ̂〉, which enter into H as its square Φα and
Φ .

α. It is natural to associate, up to a proportional factor, the spinors dα and d ·
α

with

dα →
(
Φ1/4

)
α
≡
〈
Ψ 1/4

∣∣Lα

∣∣Ψ1/4

〉
, d ·

α
→

(
Φ1/4

)
·
α
≡
〈
Ψ1/4

∣∣L ·
α

∣∣Ψ1/4

〉
, (41)

and in a similar manner, the spinors sα and s ·
α

with

sα →
(
Φ3/4

)
α
≡
〈
Ψ3/4

∣∣Lα

∣∣Ψ3/4

〉
, s ·

α
→

(
Φ3/4

)
·
α
≡
〈
Ψ3/4

∣∣L ·
α

∣∣Ψ3/4

〉
. (42)

The relations (41) and (42) give a natural link between the spinors ξα

(
ξ ·

α

)
and ζα

(
ζ ·

α

)
,

solutions of the dynamical problem, with the only physical states that can operate freely with
the Hamiltonian H: the ®square root¯ states |Ψ〉,

∣∣Ψ〉 from the bispinor Φ. Notice that there
are four (nontrivial) representations for the group decomposition of the bispinor Φ, as follows:

Φ1 =
(

Φ1/4

Φ3/4

)
→ (1/4, 0)⊕ (0, 3/4) ,

Φ2 =
(

Φ3/4

Φ1/4

)
→ (3/4, 0)⊕ (0, 1/4) ,

Φ3 =
(

Φ1/4

Φ1/4

)
→ (1/4, 0)⊕ (0, 1/4) ,

Φ4 =
(

Φ3/4

Φ3/4

)
→ (3/4, 0)⊕ (0, 3/4) .

This result is a consequence of the geometrical Hamiltonian taken in its natural square root
form and the SannikovÄDirac oscillator representation for the generators of the Lorentz group
SO(3, 1).

Commutation relations (29) obey the Clifford algebra for spinorial creationÄannihilation
operators. In this manner, the square roots of the operators sα and dα in the representation
given by the associations (41) and (42) acting on the vacuum give zero, symbolically:

√
sα →

√ (
Φ3/4

)
α
|0〉 = Ψr 3/4 |0〉 = 0,

√
dα →

√ (
Φ1/4

)
α
|0〉 = Ψ r 1/4 |0〉 = 0,

where we introduce r, s, t . . . latin indexes to design the fractionary spin states. The Fock
construction in the center of mass of the system consists now, in contrast to the construction
(6b), of the following vectors:

Ŝ1 = |0〉 eiMt/2, Ξ1r = Ψr 1/4 |0〉 eiMt/2, P̂1 = Ψ
r

1/4Ψr 1/4 |0〉 eiMt/2,
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Ξ2r = Ψr 3/4 |0〉 eiMt/2, Vrs = Ψr 3/4Ψs 1/4 |0〉 eiMt/2,

Ξ3r = Ψr 3/4Ψ
s

1/4Ψs 1/4 |0〉 eiMt/2,

(43)

P̂2 = Ψ
r

3/4Ψr 3/4 |0〉 eiMt/2, Ξ4r = Ψr 1/4Ψ
s

3/4Ψs 3/4 |0〉 eiMt/2,

Ŝ2 = Ψ
r

1/4Ψr 1/4Ψ
s

3/4Ψs 3/4 |0〉 eiMt/2.

Notice that the vectors given above are the only states that can operate into the square
root operator given by expression (28), and not that constructed directly with the operators
sα and dα. Schematically, we have, e.g., for Ξ4r, the following operability:√

m2 − M2 +
23/2M

|a|
[
1 − (σ0)α

.

β
s

.

βsα
]

Ψr 1/4Ψ
s

3/4Ψs 3/4 |0〉 eiMt/2 ≡

≡

√[
m2 − M2 +

23/2M

|a|
[
1 − (σ0)α

.

β
s

.

βsα
]]

d ·
γ
s

·
βs ·

β
|0〉 eiMt.

From expression (38) and taking into account that the number operator is s
.

βsα ≡ ns, because

s
.

β and sα work as creationÄannihilation operators, we can easily obtain the mass for the
different ®square root¯ or fractionary supermultiplets:

i) ns = 0 → MI = −21/2

|a| +

√
2

|a|2
+ m2; fractionary supermultiplet I:

(
Ŝ1, Ξ1r, P̂1

)
;

ii) ns = 1 → MIII = m; fractionary supermultiplet II: (Ξ2r, Vrs, Ξ3r);

iii) ns = 2 → MIII =

√
2

|a|2
+ m2 +

21/2

|a| ; fractionary supermultiplet III:
(
P̂2, Ξ4r, Ŝ2

)
.

We emphasize now that the computations and algebraic manipulations given above were
made with d ·

α
→

(
Φ1/4

)
·
α

and s ·
α
→

(
Φ3/4

)
·
α

(the square of the true states) into the square
root Hamiltonian. That means that the physical states are constrained by the the explicit form
of the Hamiltonian operator. Notice from expressions (35), (41) and (42) that the physical
states for the Hamiltonian in the square root form are one half the number of physical states
for the Hamiltonian quadratic in momenta.

Another important point is that the link between the new Hamiltonian H given by expres-
sion (8) and the relativistic Schréodinger equation (e.g., Ref. [20]) can be given through the
relation between the conserved currents of the fermionic ®square¯ states and the parastates.
This important issue will be analyzed elsewhere [19].

It is interesting to note that the arbitrary c-parameters a and a∗ generate a deformation of
the usual line element for a superparticle in proper time, and this deformation is responsible,
in any meaning, for the multiplets given above. This is not a casuality: one can easily see
how the quantum Hamiltonian (28) is modiˇed in the center of mass of the system by the
c-parameters a and a∗. The implicancies of this type of superparticle actions with deformations
of the quantization will be analyzed in a future paper [19].
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CONCLUSIONS

In this work the problem of the square root quantum operators was analyzed considering
the simple model of superparticle of Volkov and Pashnev [1]. The quantization of this
model was performed completely and the obtained spectrum of physical states, with the
Hamiltonian operator in its square root form, was compared with the spectrum obtained with
the Hamiltonian in the standard form (i.e., quadratic in momenta). To this end, we used the
Hamiltonian formulation described by Lanczos in [7] and the inhomogeneous Lorentz group
as a representation for the obtained physical states [12Ä14] without any other manipulation like
the usual quantum equations from the mathematical or operatorial point of view. The Fock
construction for these fractionary or ®square root states¯ was proposed, explicitly constructed
and compared with the Fock construction given in the reference [1] for the superparticle
model with the Hamiltonian in standard form. We have shown that, in contrast to [1], the
only states that the square root Hamiltonian can operate correspond to the representations with
the lowest weights λ = 1/4 and λ = 3/4.

Also we show that there are four possible (nontrivial) fractional representations for the
group decomposition of the spin structure from the square root Hamiltonian, instead of
(1/2, 0) and (0, 1/2) as in the case when the Hamiltonian is quadratic in momentum (e.g.,
Ref. [1]). This result is a consequence of the geometrical Hamiltonian taken in its natural
square root form and the SannikovÄDirac oscillator representation for the generators of the
Lorentz group SO(3, 1).

For instance, we conclude that quantically it is not the same to operate with the square
root Hamiltonian as that with its square or other power of this operator; the main problem is
that the group theoretical description for the states under which the Hamiltonian operates is
sensible to the power of such a Hamiltonian. It is interesting to see that the results presented
here for the superparticle are in complete agreement with the results, symmetry group and
discussions for nonsupersymmetric examples given in Ref. [15Ä17]; and seeing that the lowest
weights of the states under the square root Hamiltonian can operate, and because no concrete
action is known to describe particles with fractionary statistics, superparticle relativistic actions
as of [1] can be good geometrical and natural candidates to describe quartionic states [9Ä12]
(semions).
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