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OU3UKA DIIEMEHTAPHBIX YACTHUL 1 ATOMHOI'O SIAPA. TEOPH

CORRELATOR ANALYSIS
OF MULTIPARTICLE EVENTS

\N. Amelin|, P. Filip, R. Lednicky, M. Pachr

Joint Institute for Nuclear Research, Dubna

A procedure for the evaluation of correlators of any order in a reasonable computer time is presented.
Connection between correlators and fluctuations of the event mean values of observables is discussed.
Extension of the procedure to event-by-event approach is suggested. The usefulness of the method is
demonstrated using the events simulated within various models of multiparticle production.

Ipenn r ercd YMCIEHH s NPOLENYp BBIYUCICHHS KOPPEISTOPOB JI0O0Oro MOpPSAK M OLEHKH OLIH-
6GOK T KMX BBIUMCICHHI H OCHOBE M3MEPEeHHS X P KTEPHCTUK U CTHI[ B COOBITHIX UX MHOXECTBEHHOTO
poxaenus. OOCyxXn ercs CBsI3b MeXIy KOppenarop MU U (IyKTy HUSMU CpPeJHUX /IS M3MEpSeMbIX B
9KCIEepUMEHTe X P KTePUCTHK 4 CTUL. T KXe Npema I eTcd p CIIMpeHHe J HHOH Ipouefypsl H Clly-
9 i M3MEpeHUs] OTHENbHBIX COOBITUH MHOXECTBEHHOIO POXICHHUS 4 CTHIL. P GOTOCIIOCOOHOCTDH 1 HHOIA
MPOLEeayphl JEMOHCTPUPYETCS IyTeM HCIIONB30B HHUS COOBITHH MHOXECTBEHHOTO POXIEHHS 4 CTHII, IO-
JydEeHHBIX B P MK X P 3JIHYHBIX MOJENeH.

PACS: 13.85.-t; 12.38.-t; 05.70.Ln; 05.30.-d

INTRODUCTION

Recent and near-future experiments devoted to the study of relativistic nuclear collisions
(see, e.g., [1,2]) have stirred up considerable interest in suitable methods of the analysis of
high particle multiplicity events. For example, fluctuations of various observables are widely
studied using the event-by-event approach [3]. In this paper we consider the integral charac-
teristics of particle correlations, namely, the correlators [4] for a given particle observable
(e.g., the particle energy F, transverse momentum p; or rapidity y). The authors of papers [4]
and [5] have made a conclusion that the experimental measurement of the higher order energy
correlators will allow the quantitative definition of the thermal equilibrium state, if it is reached
in a given multiple production process under study. However, they did not explain properly
a procedure how to construct the correlators from experimentally measured data.

In this paper, we suggest a fast procedure how to construct these quantities as well as
related statistical errors. We also investigate their properties, including the connection with
the event-to-event fluctuations, and their ability to reflect underlying mechanisms in the case
of several models. In this context, a relation of observable mean value fluctuations and
multiparticle correlation functions [6] as well as a similar connection of the event-to-event
fluctuations and inclusive correlation functions [7] are worth mentioning.

The paper is organized as follows. In Sec.1 we give the formal definition of correlators
and discuss some of their properties. Sections 2-4 deal with the evaluation of correlators
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from experimental data. In Sec. 3 we also consider the connection of the correlators with the
fluctuations of the observable event-mean values. In Sec. 5 we apply the proposed procedure
to events simulated within various models of particle production. The results are summarized
in Sec. 5. In Appendix we derive the expressions allowing one to relate the correlators with
the central moments of the single-particle distributions and the event-to-event fluctuations of
the observable mean.

1. PARTICLE CORRELATORS

Let us start with events of fixed multiplicity n of the produced or observed particles of a
given kind. The inclusive or exclusive production probability of v < n identical particles can
be described by a multivariate probability distribution function (PDF) f{™ (z1,...,,) of a
given observable x, where f,E") is a symmetric function normalized to unity:

/fzgn)(mla-.-,xu)d-rl"'d-rz/:1- (D

The PDF can be characterized by the mean value

7" = / af (2)dz, 2)
and by the /-order moment-type quantities

ol /(x21 — ) (g, = 2 ) (@, 2 da - day,. 3
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Due to the PDF symmetry, all the quantities Ci(ln’_ft_)il coincide for any permutation of indexes.
In the case of independent production of particles of a given kind the multivariate PDF re-
duces to the product of the same one-particle distribution functions (neglecting the correlations

due to quantum statistics and final state interaction):

@, ) = £ () (). 4)

Obviously, in this case C’Z(lnl‘?“ = 0 for iy # iy # ... # ii. The quantities Cffzz)ll
for i1 # i2 # ... # i; thus measure a correlation among produced particles, and therefore
we will call them correlators. Since correlators do not depend on the particular set of [
mutually different indexes, we will use for them the simple notation Cl(”’gc). Note that for

equal indexes i1 =iy = ... =i, Cl(lng)u = M™" represents the Ith central moment of the
one-particle PDF.

In practice, number n of produced or observed particles of a given kind can vary from 0
to the ultimate multiplicity ny,ax, SO one has to introduce the corresponding probabilities p,,
and rewrite Egs. (2) and (3) as

Mmax Mmax Mmax Mmax

(z) = <f(”)> => ™ [ > pa=> pn/x W@ [ 3 p, )
n=1 n=1 n=1 n=1
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Mmax Mmax

G =3 / (21 = (@) (a1 = @D (@, w)day - day 2 e ©
n=I

Generally, the PDF can depend on various event characteristics «, including the observed
multiplicity, the particle composition or the selected range of the impact parameters. Equa-

tions (5) and (6) should be then generalized by the substitution Z Dn — Z Dq. Particularly,

<§3> = <£(n)> = Zpax(a)/Zpa = Zpa /xfl /Zpoz (7

Using the identity
ap = (@) = (2 — 7)) + (3 — (7)), 8)

one can rewrite the global correlator Cl(r) in terms of the a-dependent correlators
o = / (1 — (@) — (@O F (@, . wy)day - day ©)

and the fluctuations of the observable mean z(®) at a given a around the global mean (Z):

Cr=2 e > (i) Oy (@) - / > pa= <Z (l)cﬁa’I><m<a>—<x>>l—A>,

) (i0)
where C\™" = 1,C{**) = 0. One may see that the absence of the correlation at any

a (i.e., C’l(a’z) = 0 for I > 1) does not lead to a vanishing global correlator. In this
case, the latter is solely determined by the fluctuation of the a-dependent observable mean:
O = (@@ — (z))").

The above formalism ignores the possible non-identity of the selected particles. Its
generalization to the correlators of different particle species is however straightforward. For
example, for two types of particles, say, those characterized by positive (4) and negative (—)
charges, one has to make the substitutions [ — I ,l_, x — x4 and z_. Particularly,

# = / o £ (@ )day, 7 / )dz_, (1)

Cl(f:lz_) = /(x+1 — <ES_0¢)>) . .(erhr _ <Eg_a)>)($71 . <E(_a)>) ) '(x*L . <.f(_a)>)><

X fl(_:i)l_ (.’E+1,. ) ‘r+z+ FL—qse ey ey )derl' : 'dx+1+ dZL',l' ’ 'd$717 . (12)

It is instructive to express the correlator C’(I C’ﬁf of two charged particles in the events
w1th n = ny + n_ selected particles through the correlators C’QT) =c" p +, CO =0 a
Cl 1= C’+_) Using the identity

T=T4— (T4 —T) = T4 — ATy, (13)
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one can write

0g>:%;H0$1+Afﬁy+%fq092+Afﬁy+%?quZ+Ai¢n;L (14)
where ) )
Nee =Nyt + N +ny_ = n+(n§ = ) + - (ng — ) tnen- (15)

is the number of charged pairs. One may see that even in the absence of correlations of

(z

particles of given charges, i.e., C’J(rﬂ) =c" =C +) = 0, the correlator C’éf) can be nonzero

provided T, # Z_. In particular, for n,. =n_ =n/2,
=S+ S e, Any = —Ar = (@ —a) (9
T=—2 —T_=-(T T_ Ty =—-AT_ = (T4 —2_
o T o W+ ) + 5 T+

and, in the absence of correlations,

- — )2
@ _ (@4 -2 )"
ot Tt <O (17)

2. CORRELATOR ESTIMATES

Let us first consider ne, experimental events with a fixed multiplicity n. The mean value
of the observable x can then be estimated as

1 Nevt )
7) — (%)
T) = T\ (18)
< > Nevt ;

where (%) is the estimate of the observable mean in the ith event:
ﬁ”—lﬁiﬂ“ (19)
== i
j=1

Similarly, the correlator C’l(m) can be estimated as

1 Nevt

S, (20)

i=1

Cvl(-”f) —

Tevt

where C’l(i’z) is the estimate of the correlator in the sth event:

iz 1 i _ i _

G = 30 = @) () — () @
the sum in Eq. (21) runs over all n; sets of [ particles chosen from n particles in the event. One
can sum either over n; = (}) =n(n—1)---(n—1+41)/I! of the sorted sets i1 < iz < ... <7
or over ny =n(n—1)---(n—1+1) of the unsorted sets i1 # i2 # ... # ;. In the latter case,
each of the unsorted sets gives rise to the /! of identical terms in the sum.
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In the case of a mixture of events with different multiplicities n9, one can estimate the

observable mean and the correlators in a similar way as in the two-step averaging procedure
given in Egs. (18)—(21). One should only make substitutions n — n(?), n; — nl(l) in
Egs. (19), (21) and take into account that the single-event averages enter into Eqs. (18) and

(20) multiplied by the weights proportional to n(*) and nl(i), respectively:

@)E<ﬂ”>:j%§fn@£m, N = ifn (22)
d“z<d”§—-12:@d”)<M:§fWW (23)
1 l TN, ) £ 1

The same result can be obtained by averaging simply over all N collected particles or all N,
l-particle sets (formed from particles within the same event only):

1 N
N N ij’ (24)
j=1
x 1 o T
€ = 5 (i, = (@)e-(a — (a), (25)

where the sum in Eq. (25) runs over all N; sets.

The generalization of Egs. (18)—(25) to two or more particle species is straightforward.
For example, for two types of particles characterized by positive and negative charges one
has to make substitutions [ — I4,l_, n — ny,n_, ng — ng,n—, N — an l(z_) and

7
T — x4, z_. Particularly,

o) = @Y — @)@ — (o)), oY = ool (26)

To calculate the errors, we can split all the events into n, subgroups, each with about the
same number of events, and estimate the correlator C (m) (we omit all other indexes for the
sake of simplicity) in the mth subgroup using the global estimate of the mean value (z). The
global estimate of the correlator is then given by the mean of the group values:

1 &
C=— E o, (27)
g m=1
The dispersion of the group values is
LSS o
D= cm — 0)? 28
T 2, 8)

where the sum of the deviations squared is divided by n, — 1 since one degree of freedom
is used to determine the global estimate of the correlator according to Eq. (27). Neglecting
a small correlation of the group correlators due to the use of the global estimate of (z), one
can calculate the error in the global correlator estimate as

I N G N P
U(C) B <n9> B (ng(ng - 1) Z(C C) > . 9

m=1
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3. CORRELATORS AND EVENT-TO-EVENT FLUCTUATIONS

To relate the correlator C’l(z) with the event-to-event fluctuation of the observable single-
event mean Z(Y), one can use the analog of the identity in Eq. (8) with the substitutions

T — x,(f) and () — z() and rewrite the estimate of the single-event correlator in Eq. (21)
in the form

l
i,T l ,T) —(i _\\[—
@”=§:Q}&%W—@WA, (30)

A=0
where cgi’w) =1, cgi’w) =0and cl(i’:”) for | > 2 is defined similarly to Eq. (21), except for the

substitution (z) — z(V):

iz 1 D (i B~
" = == 3@l =30 (@) - 20). (1)
l

The estimate of the correlator can then be written in the form
l
T l 9,T) /(4 _ —
a )=<Z <A>C§ @9 — (@) A> , (32)
A=0
where the [-dependent averaging is defined in Eq. (23). Introducing the notation
Az =z —(z) (33)

and omitting the event indexes, Eq. (32) particularly yields

O5) = () + AZ?),, 34
O = (7 + 387 AT + AF®)3, (35)
O = (el + 4 Az + 6¢57 AZ + Az, (36)

For two different particle species + and —, Egs. (26) and (32) yield, e.g.,
i) = = (A7 A7 i, O = Ol = (" + A5.H)AT )20 (BT)

The meaning of quantities cl(z) is clarified in Appendix, where it is shown that they can
be expressed through the estimates of the moments of the single-particle z-distribution in a

given event:

z 1 _
m{" = EZ(% — ) (38)
j=1
Particularly,
(2)
z m
o = -2 (39)
()
. 2
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3n (méz))Q - 6m5f)
(n—1)(n—-2)(n-3)

From Eqgs. (34)-(37) and Egs. (39)—(41) one may conclude:

e Quantities cl(z) are determined by the shape of single-particle z-distribution and by
multiplicity of detected (n) or selected (n — v < n) particles in a given event. Therefore,
they are sensitive only to a part of the correlation related to this shape; an example is the
correlation due to energy-momentum conservation (see the 4th item). The remaining part
is contained in the event-to-event fluctuations of the observable mean in accordance with
Eqgs. (32)—(37).

e The magnitude of the quantities cl(”’r) decreases with the increasing number v of selected
particles. This decrease should be compensated by the v-dependence of the fluctuations
of single-event mean observable Z(?) to guarantee the v-independence of the correlators.
Particularly, for uncorrelated production (C\") = 0), one gets (Az2)Y) = (m$7)y/(v — 1).

e Assuming the moments ml(w) of the single-particle distribution weakly varying with
the number n of observed particles, the correlators for high enough n are dominated by the
event-to-event fluctuations, i.e., C’l(m) — (AZ!).

e For a conserved additive observable x (e.g., particle energy), considering particles of
any kind and assuming that all n. particles are observed (n = nyo), the mean = does
not fluctuate, so C’l(m) = (cl(m)h. Particularly, C’ém) = —(mé’r)b/(ntot —1) and C’?()x) =
2<m§1)>3 /[(ntot — 1)(ntot — 2)] for the events with about the same numbers of produced
particles.

& -

(41)

e Evaluation of correlators Cl(r) using Eqgs. (39)-(41) can save substantial amount of
computing time compared with the direct evaluation according to Eq. (25). In the former

case, the number of operations is o n, while in the latter case, it is nt.

4. EVENT-BY-EVENT CORRELATORS

In the case of uncorrelated particle production, the event-to-event fluctuations of the
observable mean are solely determined by the quantities ng)' Such «standard» fluctuations
are thus related to the single-particle distributions and can be estimated by the event-mixing
techniques. The eventual deviation from the «standard» or «statistical» fluctuations then
signals the presence of correlations or — a mixture of the events with different single-particle
distributions.

Therefore, to clarify the origin of the «non-standard» or «non-statistical» fluctuations, it is
desirable to estimate the correlators for the events with similar characteristics a. The ultimate
solution is to use the information from a given event only. To do so, one has to destroy
the equality in Eq. (A.1), i.e., to decouple as much as possible the observables x; entering
into the correlator estimate from the observable mean Z in a given event. In the case of
sufficiently large multiplicity, it can be achieved by splitting the event in a number of sub-
events s = 1,2,..., ngeyt With about the same multiplicities n(®). One can then estimate the
correlators according to Eqgs. (18)—(25) or (34)—(37) and (38)—(41), making the substitutions
i — s and Neyt — Nsevt-
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5. EXAMPLES

Let us first consider the following simple PDFs characterized by the parameters 7', T3

and A:
) exp (— ) exp (— ), 42)

fén)(xl,xg,...,xn)ocﬁexp (—%) 1+ A Z exp <_ u) ) (43)
i=1

& T

i<j<n
The parameter A in Eq. (43) controls the correlation strength; for A = 0 there are no corre-
lations among particles, so Cl(””) = 0. Equation (42) corresponds to two-particle correlations

Tl — T2

T

Tl — T3
T

T2 — I3
Ty

f?ES) (z1,72,73) o< exp <—

only, thus leading to C’?()I) =0.

The correlator expectation values calculated according to PDFs in Egs. (42) and (43) by
direct numerical integration and their estimates obtained from simulated events are compared
in Table 1. One may see that the estimated values of the correlators agree with their

Table 1. The correlators corresponding to PDFs in Eqs. (42) (the first two lines) and (43). The results
of numerical integration are compared with the estimates obtained from n..; simulated events. The
allowed interval of the variable x was 0-150, the parameters 7" = 150, 71 = 25 and A =0, 1,2

Correlator o cs o™
n=23 13125 0
Neve =5+ 10° | 1313.4+1.8 | 61.0+108.0
n=3,A=0 0 0
Neve =5-10° | —0.3+1.4 21.0 + 70.0
n=3A=2 229.0 17715
Neve = 5+ 10° | 229.9+1.4 | 1779.0 + 110.0
n=4,A=1 113.8 707.0 2913.0
Neve = 3-10° | 114.440.5 666.0 £ 23.0 | 3890.0 + 1836.0

expectation values within the errors. The relative errors rapidly increase with the order ! of
the correlator, thus making quite uneasy its measurement for [ > 4.

As another example, we consider the energy correlators estimated from the «micro-
canonical» ensemble of events simulated according to the non-relativistic phase space (non-
relativistic ideal gas of particles) using Metropolis algorithm to redistribute the particle
energies via binary energy-conserving collisions. The total amount of energy distributed
to nyet particles is Xyor = N0t T, Where Z is the mean particle energy. We have put £ = 100
in arbitrary units. Assuming that all n, particles are observed, the mean particle energy
does not fluctuate (AZ = 0) and the correlators C’l(z) are then given by Eqgs. (39)—-(41) with

n = Mot Particularly, C’y) and C’:,EI) vanish at large nyot as 1/nior and 1/n012, respectively.
The results shown in Table 2 confirm this behavior.

In Table 3, we show the same correlators as in Table 2 for nto; = 100, but now calculated
for different numbers of selected particles v < niot. One may see that within the errors the
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Table 2. Correlators Céz) and Céz) estimated from the «microcanonical» ensemble of events with
fixed mean particle energy Z = 100 in arbitrary units, each consisting of 2 - 10" events with fixed
particle multiplicity n.:. All particles are assumed to be observed, i.e., n = 1ot

Ntot 5 10 15 20 100
CS | —11814+2 | —624+1 | —426+1 | —323+1 | —66.2+0.1
C$ | 49900 £ 200 | 14730 £50 | 6940 £20 | 4041 + 6 17441

correlator estimates are v-independent. This confirms the conclusion at the end of Sec. 3 about

the compensation of the v-dependence of the quantities cl(”’r) by that of the z fluctuations.

Table 3. The same as in Table 2 for n:.,; = 100 and different numbers v of selected particles

v 5 10 15 20
C | —75+8 | —63+3 | —68+2 | —66+2
C$* 1 200 £500 | 3004100 | 220 +70 | 170 + 50

Finally, we have estimated the pion transverse momentum correlators Cép "), C?()p 2 and

C{P) using 2 - 103 central (impact parameter b = 0 fm) events of Pb + Pb collisions at
total c.m. energy /s = 200 A GeV simulated in the parton string model (PSM) [8]. In
this phenomenological model, the soft and semihard parton collisions initiate the formation of
color strings and the subsequent string breaking leads to the production of stable (with respect
to strong interaction) hadrons and resonances that are forced to decay. We have divided the
simulated events into 100 subgroups and selected v = 1900 pions of a given charge in each

event. As one can see from Table 4, the correlators C’gp e) are consistent with zero within the

errors, while this is not the case for the correlators C’Q(p *) and C’LEP *). The latter appear to be
nonzero for any combination of pion charges, being somewhat higher for neutral pions. We

Table 4. The estimates of the pion transverse momentum correlators obtained from 2-10° simulated
central PSM events of Pb + Pb collisions at total c.m. energy /s = 2004 GeV

C(Pt) C(Pt) C(Pt)
Species : 3 L,
(GeV/c) (GeV/e)® (GeV/e)
at (44.04+6.6)-107% | (=744 12.1)-107® | (8.7£3.3)-107°
T (446 +£6.0)-107% | (7.84£125)-107% | (9.5+£4.6) 1077
70 (71.24£76)-107¢ | (3.0£2.7)-1077 | (34.3£9.5)-107°
nt (52.64+4.2)-107% | (-1.5+7.1)-107% | (9.0£2.0)-107°
50 1 (59.6 £3.5)-107° | (21+£5.3)-107% | (11.2+1.6)-107°

have also selected 77~ pairs only and estimated C'P*) = (61.944.4)-1075 (GeV/c). Since
the PSM takes into account only the resonances from the lowest SU(3) multiplets that do not
decay into pairs of like-sign charged pions, the small difference between the correlators for
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pairs of like-sign and unlike-sign charged pions indicates that the nonzero PSM correlators
are mainly of the non-resonance origin. Also, since we consider the high multiplicity events,
the correlations due to energy-momentum conservation are of minor importance in accordance
with the discussion in Sec.3. The probable source of the nonzero PSM correlators are thus
the semihard parton collisions that are becoming important with the increasing energy and
are known to lead to a noticeable «non-statistical» p; fluctuation in Au + Au collisions at
RHIC [2].

CONCLUSION

We have developed a fast procedure allowing one to calculate, in a reasonable computer
time, the particle correlators of any order and estimate their errors. The corresponding C++
code is available on the request at e-mail address: fyziflip@savba.sk. We have suggested
the extension of this procedure for the event-by-event approach as well. We have shown a
close relation between the correlators and fluctuations of the observable event-mean values.
We have applied the proposed procedure to the events simulated within various models and
demonstrated the usefulness of the two-, three- and four-particle correlators; the measurement
of the higher-order correlators is rather difficult as it requires very high statistics.
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APPENDIX

To clarify the meaning of quantities clz)

of the equality

, let us follow Ref. [9] and consider the powers

0=> (z;—2) =) _A, (A.1)
=1

Jj=1 Jj=

Thus, the second, third and fourth powers of Eq. (A.1) yield

0=> AjA+> A% (A.2)

J#k J

0= Y AAA+ (‘;’) S AN+ AY (A3)
j

J#kAL i#k
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[\

4
0= Z A AN A, + ( ) Z AjAkA?‘F

j#kAIEm j#kAL
174\ [4-2 2 A9 4 3 4
sa(o) () et () T aat+ Y al e
J#k J#k J
Using further the relations
DA A== A (A.5)
J#k k

2
DOOAANAT =D AN D AT -2) AAY = — (ZA?) +2) A}, (A6)
l l

kAL ik I ik

and )
> ajat- (¥at) -¥at e
j#k 1 l
one can express the multiple sums in Eq. (31) through the sums of the powers of A; related
to the estimates of the central moments mf\w) in Eq. (38). Rewriting Eq. (31) in the form

;= : INWy A8
G, L et (A8

one then proves Egs. (39)—(41) relating quantities cl(z) to central moments mE\'T).
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