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NOVEL SETS OF COUPLING EXPANSION
PARAMETERS FOR LOW-ENERGY pQCD1

D. V. Shirkov
Joint Institute for Nuclear Research, Dubna

In quantum theory, physical amplitudes are usually presented in the form of Feynman perturbation
series in powers of coupling constant α. However, it is known that these amplitudes are not regular
functions at α = 0.

For QCD, we propose new sets of expansion parameters wk(αs) that re	ect singularity at αs = 0
and should be used instead of powers αk

s . Their explicit form is motivated by the so-called Ana-
lytic Perturbation Theory. These parameters reveal saturation in a strong coupling case at the level
αeff

s (αs � 1) = w1(αs � 1) ∼ 0.5. They can be used for quantitative analysis of divers low-energy
amplitudes.

We argue that this new picture with non-power sets of perturbation expansion parameters, as well
as the saturation feature, is of a rather general nature.
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Ö¢²ÖÕÉ¸Ö ´¥·¥£Ê²Ö·´Ò³¨ ËÊ´±Í¨Ö³¨ ¢ ÉμÎ±¥ α = 0.

ŒÒ ¢¢μ¤¨³ ´μ¢Ò¥ ´ ¡μ·Ò ¶ · ³¥É·μ¢ · §²μ¦¥´¨Ö wk(αs), ±μÉμ·Ò¥ ÊÎ¨ÉÒ¢ ÕÉ ¸¨´£Ê²Ö·´μ¸ÉÓ
¶·¨ αs = 0 ¨ ¤μ²¦´Ò ¨¸¶μ²Ó§μ¢ ÉÓ¸Ö ¢³¥¸Éμ ¸É¥¶¥´¥° αk
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1. SUBJECT AND MOTIVATION

In quantum theory, physical amplitudes are usually presented in the form of perturbative
series in powers of an expansion parameter g related to intensity of interaction, the nonlinear
term in the equation of motion. As is known from the early 1950s [2], these amplitudes
are not regular functions at α = 0, irrelevant to the existence of UV divergencies and
renormalization. The most general and transparent argument [3] can be formulated via the
path integral representation.

In QFT, one deals with Feynman perturbation theory (PT) series in powers of a numerical
parameter α. In particular, in current practice, such a series for a QCD observable serves

1A preliminary version with the main results was published in [1].
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as a launch pad for Renorm-Group (RG) invariant expansion in powers of invariant/effective
coupling ᾱs(Q2) or ᾱs(s). As a rule, this function ᾱs, being a sum of ultraviolet (UV) logs,
obeys phantom singularities, like the so-called Landau pole. In QCD, being located at a scale
of a few hundred MeV, they spoil the low-energy applications.

From the mathematical point of view, a possibility of convergent power expansion implies
that the expanded function f(α) is a regular (analytic) function of its argument at small α.
Meanwhile, it is known for sure [2] (also [4, 5]) that in the complex α plane, there is an
essential singularity at the origin α = 0. Correspondingly, at a small real positive α, the PT

series
∞∑
n

cnαn is divergent with cn ∼ n! at n � 1. Nevertheless, under some condition,

a ˇnite sum
N∑
n

cnαn can serve as a means for numerical approximation of the expanded

function f(α).
In such a situation, the value n∗ ∼ 1/α is a critical one. Here, PT expansion can start to

explode. Indeed, in the low-energy QCD, at αs ∼ 0.2−0.3, n∗ ∼ 3−5 and thus the value of
the three- and four-loop calculation is under question. Examples are known (see, e.g., Table 2
in [6] and [7]).

How serious is this menace for practical low-energy pQCD calculation? Is it possible
to use some other expansion parameter w(α) instead of α or a nonpower set {wk(α)} of
parameters1 instead of {αk}?

Below, we try to answer this question by using a combination of rather general arguments,
including the principles of causality and renormalizability, as well as self-consistency condition
of theoretical description with respect to conversion from one physical picture (representation)
to another by a suitable integral transformation.

During the last decade, on the basis of these principles, a special scheme for ghost-free
calculations in QCD was proposed [9] and elaborated [10]. It is known now as Analytic
Perturbation Theory (APT). For fresh reviews, we recommend [7, 11, 12]. In what follows,
we shall use the APT notation and results. Compendium of a few relevant APT deˇnitions is
presented below in Appendix.

Discussing, in Conclusion, the possible meaning of our particular results, we involve
additional evidence from the soluble QFT models with an infrared ˇxed point.

2. EQUIVALENCE OF TRANSFORMATIONS

Within the Analytic Perturbation Theory, a transition from the common QCD effective
coupling function αs(L), L = ln(Q2/Λ2) to the Euclidean αE(L) or Minkowskian αM (L)
one, etc., can be treated as a transition to a new expansion parameter. For example, in the
one-loop case, at αs, L > 0 the conversion

αs → αM (αs) = wM (α) =
arctan (πβ0 αs)

π β0
∼ αs −

π2β2
0

3
α3

s + . . .

1As it was proposed, e.g., by Caprini and Fischer [8].
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induces a transition to the new effective coupling

αs(L) =
1

β0 L
→ αM (L) =

arctan (π/L)
π β0

∼ αs(L) − π2β2
0

3
[αs(L)]3 + . . .

Generally, all the APT nonpower expansion functions, Minkowskian Ak(s), Euclidean
Ak(Q2) or Distance ℵk(r−2), are mapped via the relation

L → Φ(αs) = −
αs∫

d a

β(a)
=

1
β0αs

+
β1

β2
0

ln
(

β1

β0
+

1
αs

)
+ O(β2), (1)

L = ln(s/Λ2), ln(Q2/Λ2), ln(1/r2Λ2), on sets {wAPT=M,E,D
k (αs)},

Ak → wM
k (αs), Ak → wE

k (αs), ℵk → wD
k (αs).

The functions wAPT
k resultant from different sources are related by integral transformations

that stem from ones connecting the ®parent¯ APT expansion functions. For example, from
Adler and Fourier transformations

Ak(Q2) = Q2

∞∫
0

ds Ak(s)
(s + Q2)2

, ℵk(r−2) = r

∞∫
0

dQ sin (Qr)Ak(Q2)

and Eq. (1), there follows a general relation

wE
k (α) =

∞∫
0

daKEZ(α, a)wZ
k (a); Z = M, D. (2)

2.1. The One-Loop Case. In the one-loop case, consequent expansion elements are con-
nected by the simple recurrent relation

w(1)
k+1(α) =

α2

k

dw(1)
k (α)
dα

, (3)

while Eq. (2) for Z = M takes the form

wE
k (α) =

1
2

∞∫
−∞

d a

a2

wM
k (a)

1 + cosh (1/β0α − 1/β0a)
. (4)

The novel ®Minkowskian¯ and ®Euclidean¯ one-loop expansion functions

α
(1)
M (α) = wM,(1)

1 =
arctan (πβ0 α)

π β0
; wE,(1)

1 (α) = α +
β−1

0

1 − e1/(β0α)
; (5)

wM,(1)
2 =

α2

1 + π2β2
0 α2

; wE,(1)
2 (α) = α2 − β−2

0 e1/(β0α)

[1 − e1/(β0α)]2
; (6)

wM,(1)
3 (α) =

α3

[1 + (πβ0 α)2]2
; wM,(1)

4 (α) =
α4 (3 − π2 β2

0 α2)
3 [1 + (πβ0 α)2]3

(7)

are mutually connected by relations (3) and (4).
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All the functions w···
k (αs) as αs → ∞ have ˇnite limits

wM
1 (∞) = αM (∞) = wE

1 (∞) = αE(∞) =
1

2 β0
∼ 0.7; wM,(1)

2 (∞) =
1

π2β2
0

∼ 0.20;

wE,(1)
2 (∞) =

1
12β2

0

∼ 0.16; wM,(1)
3 (∞) = 0; wM,(1)

4 (α) = − 1
(π β0)4

∼ −0.04.

Here, the limit αs → ∞, by (1), is adequate to L → +0. Curious enough, a physical
region below Λ (i.e., L < 0) corresponds to negative αs values.

2.2. Some Properties of Functions wAPT
k (αs). A few general properties of novel expan-

sion functions are of interest:
• Like their APT ®parents¯ Ak, Ak, ℵk, functions w···

k (αs) in the whole real positive
domain (−∞ < αs < +∞) form nonpower sets of oscillating functions with k zeroes.

• Natural scales for them are α∗
M = α∗

E = 1/2β0 ∼ 0.7.
• Some of the functions, like wE

k , obey singularity e1/(β0 αs).
• They are not sensitive to ®their family origin¯. In Fig. 1, curves wE

1,2 are close to wM
1,2

(as compared to the CapriniÄFischer curves wcf
1,2 obtained [8] by conformal transformation of

the Borel image). As can be shown, the same is true for wD
1,2.

Fig. 1. Comprasion of the ˇrst two APT-inspired wE,M
1,2 (αs) functions with the CapriniÄFischer wcf

1,2

ones

Some qualitative properties of wAPT
k (αs) should be mentioned:

1. APT-inspired functions wAPT
1,2 (αs) deviate from powers αs, α2

s at αs ∼ 0.3−0.4,
which corresponds to a few GeV region.

2. Quick saturation of the ˇrst w1(αs) at 0.4 and second w2(αs) at ∼ 0.15 values.
Thus, ®strong coupling¯ means αeff � 0.5. Physically, due to this, in a few GeV region

effective QCD coupling should be less than 0.5.
3. Relative difference between functions ®of various origin¯ is small (less than 10 per

cent) up to αs ∼ 0.8. Due to this, as a ˇrst step, for crude quantitative estimate one could
use one-loop Minkowskian expressions (5)Ä(7) which are the simplest ones.
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4. Note also that a modiˇcation of the PT expansion by new prescription (αs)k → wk(αs)
for one-argument observable, like total cross sections or Adler functions, automatically
leads Å by use of the RG algorithm Å to a nonpower APT expansion.

3. DISCUSSION

• First, the possible use of novel functions {wAPT
k (αs)} in pQCD has to be mentioned.

In practice, the RG improving of PT results is limited by the ®one-argument¯ objects, like
total cross sections and D-functions. For the ®two-argument¯ ones (diffraction amplitudes,
structure functions), one is forced to use special tricks, e.g., projection on one-argument
moments.

New RG-inspired expansions over (αs)k → wAPT
k (αs) provide another bypass solution

to this issue. In other words, we recommend using novel expansion functions for theo-
retical analysis of divers physical amplitudes in the low-energy (low-momentum transfer)
regions. For a semi-quantitative quick analysis, one could use one-loop Minkowskian func-
tions (A5), (A6) with effective values [13] of the Λ parameter.

• We believe that the observed feature of interaction saturation could have a rather
general nature. Indeed, the saturation of the interaction intensity or, rather, its self-saturation
in the ®strong coupling limit¯ could be correlated with analogous features of some soluble
QFT models, like massless two-dimensional [14, 15] Thirring and sine-Gordon model [16]
equivalent to the massive Thirring one [17]. Additional evidence can be gathered from models
with infrared ˇxed point, like the GrossÄNeveu model [18,19] and the three-dimensional ϕ4

model [20].
• One of the possible ways of further analysis, to reveal this aspired generality, could

be connected with RG study of the corresponding nonquantized ˇeld models by the recently
devised [21, 22]) method of renormgroup symmetries (RGS) for boundary value problems of
classical mathematical physics. Here, one has to ˇnd appropriate RGS invariants and then
relate them with a quantized version with the help of the functional integral representation
and the saddle-point procedure [23].
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zakov, and S.Mikhailov for useful discussion and, especially, to I. Aref'eva for valuable
advice. The work has been supported in part by RFBR grant No. 08-01-00686 and by Scient.
School grant 1027.2008.2.

Appendix

BASIC APT FORMULAE

Within the Analytic Perturbation Theory, the set of common QCD coupling functions
and its powers is changed for a nonpower set of ghost-free functions connected by recurrent
relations. For instance, in the one-loop case, instead of the polynomial set

ᾱ(1)
s (Q2) =

1
β0 ln (Q2/Λ2)

; (ᾱ(1)
s (Q2))2 =

1
β2

0 ln2 L
; (ᾱ(1)

s (Q2))3 . . . (A1)
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one deals with

α
(1)
E (Q2) ≡ A1(Q2) =

1
β0L

+
Λ2

β0(Λ2 − Q2)
; A2 =

1
β2

0L2
− Λ2 Q2

β2
0(Λ2 − Q2)2

; A3; . . .

(A2)
related by the differential relation

−1
k

A(1)
k (Q2)
dL

= β0 A(1)
k+1(Q

2); L = ln
Q2

Λ2
. (A3)

The functions {Ak(Q2)} form a basis for expansion of RG-invariant functions depending on
one kinematic argument, Q2 = Q2 − Q2

0, the transferred momentum squared. For example,
the Adler function is presented there in the form of nonpolynomial perturbation expansion

D(Q2) =
∑

k

dkAk(Q2).

These ®Euclidean¯ expansion functions are related to the common [ᾱs]k ones by the prescrip-
tion

Ak(Q2) =

∞∫
0

ρk(σ)
σ + Q2

dσ, ρk(σ) =
1
π

Im [ᾱs(−σ − iε)]k , (A4)

that provides correspondence in the weak coupling limit: Ak → αk
s as αs → 0.

At the same time, within the APT, one can deˇne ghost-free ®Minkowskian¯ expansion
functions for RG-invariant observables in another representation, for observable depending
on s, c.m. energy squared, like (relation of) total cross section(s)

R(s) =
∑

k

dk Ak(s); Ak(s) =

∞∫
s

dσ

σ
ρk(σ).

These Minkowskian functions are connected with the Euclidean ones by integral transfor-
mations

Ak(s) =
i

2π

s+iε∫
s−iε

dz

z
Ak(−z); Ak(Q2) = Q2

∞∫
0

Ak(s) ds

(s + Q2)2
.

The ˇrst of them, Minkowskian effective coupling, in the one-loop case has a simple form

α
(1)
M (s) = A

(1)
1 (s) =

1
πβ0

arccos
Ls√

L2
s + π2

∣∣∣∣∣
Ls>0

=
1

πβ0
arctan

π

Ls
, Ls = ln

s

Λ2
. (A5)

Accordingly,

A
(1)
2 (s) =

1
β2

0

1
L2 + π2

; A
(1)
3 (s) =

1
β3

0

L

(L2 + π2)2
; . . . . (A6)
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Quite analogously, one can devise [24,25] analogous expansion functions ℵk for the ®distance
picture¯1

ℵk(
1
r2

) = r

∞∫
0

dQ sin (Qr)Ak(Q) =
2
π

∞∫
0

dQ

Q
sin (Qr)

∞∫
0

dσ ρ(σ)
σ + Q2

. (A7)

The convenient form of the APT formalism uses a spectral density ρ(σ) taken from pertur-
bative input (A4). Then all the involved functions in the mentioned pictures look like

Ak(Q2) =
1
π

∞∫
0

ρk(σ)dσ

σ + Q2
, Ak(s) =

1
π

∞∫
s

dσ

σ
ρk(σ), ℵk

(
1
r2

)
=

∞∫
0

ρk(σ) dσ

σ

(
1 − e−r

√
σ
)
.

(A8)
In the one-loop case

ρ
(1)
1 =

1
β0 [L2

σ + π2]
; kβ0ρ

(1)
k+1(σ) = −dρ

(1)
k (σ)
dLσ

; Lσ = ln
σ

Λ2
.

As was noted above, these expressions were generalized for the higher-loop case with transi-
tions across heavy-quark thresholds and successively used (see, e.g., [6]) for ˇtting of various
data.
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