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POLARIZED BEAMS IN STORAGE RINGS

Yu. M. Shatunov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

This paper reviews modern technics to accelerate polarized particles to high energy and to preserve
their polarization in the storage rings. Possibilities of the beam polarization control are discussed for
proton and electron machines.
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INTRODUCTION

Spin is a quantum number of an internal angular momentum connected with a particle
magnetic moment. This statement in its time could solve many discrepancies in the atom
theory. Later it has appeared that the spin considerably contributes to particle interactions at
high energies and puts many puzzles to experimentalists and theorists. Due to this fact, there
is increasing interest in the availability of spin-polarized beams at high energy and nuclear
physics experiments.

It is well known that particle motion in modern accelerators is described with extremely
high accuracy by the semiclassical approach. But for the spin, there is no quasi-classical
limit when orbital quantum numbers are large. Even at highest energies, an electron or a
proton remains in eigenstates ®up¯ or ®down¯ as particles with spin 1/2 (in units of �). The
quantum operator for this spin is Ŝ = 1/2σ̂, where

σ̂ = σ = (σx, σy, σz) =
[(

0 1
1 0

)
;
(

0 −i
i 0

)
;
(

1 0
0 −1

)]

are Pauli matrices.
Following the Ehrenfest theorem, we determine in the particle rest frame a classical vector

of spin in any state |ψ〉 as a quantum average of spin operator S = 〈ψ†|σ̂|ψ〉. This vector S
precesses in the rest frame around magnetic ˇeld Bc together with particle magnetic moment
μ = qS:

dS
dτ

= Ωc × S.

Spin precession frequency Ωc = −(q0 + q′)Bc, where q0 = e/m and q′ are normal and
anomalous parts of gyromagnetic ratio q. (We shall take later c = � = 1.)
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A relativistic generalization of this spin motion equation to a laboratory frame has been
done in different ways by many authors (see, for example, [1]). The most easy-to-use for
accelerator applications view can be presented in the following form:

S ′ =
dS
dθ

= W(θ) × S (1)

with
W(θ) = −q0

γ

[ (
1 + γ a

)
B⊥ + (1 + a)B‖ +

( γ

γ + 1
+ γ a

)
E× V

]
.

Here we decomposed the magnetic ˇelds in two projections B‖ and B⊥ (along and per-
pendicular to particle velocity V) and introduced so-called magnetic anomaly of a particle
a = q′/q0 and the generalized accelerator azimuth θ instead of time t .

The magnetic moment anomaly is a fundamental property of a particle on a level of its
mass. By now, thanks to many measurements, magnetic anomalies of various particles are
known with high accuracy. For example, for electron ae = 1.1596521859 ·10−3 ±3.8 ·10−12

and for proton ap = 1.792847351± 2.8 · 10−8.
Before proceeding further we analyze some of the essential features of the above expres-

sions:
• It is important to note that s is expressed in the rest frame, whereas E and B are the

ˇelds in the laboratory frame.
• q0 and q′ contribute differently to spin rotation by electric and magnetic ˇelds (depending

on parameter ν0 = γ a), whereas the particle revolution frequency is determined only by q0:

ω = −q0

γ

[
B⊥ +

γ2

γ2 − 1
E× V

]
. (2)

• At low energies combinations of electric and magnetic ˇelds are used to control spin
orientation in polarized particle sources.

• In cases ν0 = 1 ÷ 10 combinations of longitudinal and transverse magnetic ˇelds are
applied to deliver the required beam polarization to an experiment area. For much higher
energies (ν0 > 10) spin rotations by transverse magnetic ˇelds are more effective.

1. SPIN CLOSED ORBIT

Let us remind the approach which is used for the orbital motion. Particle coordinates
are given by the radius vector R(θ) = R0(θ) + r, where R0(θ) presents a periodical closed
orbit. The vector r = xex +zez describes small deviation from CO Å horizontal and vertical
betatron oscillations with corresponding tunes νx and νz.

Following this approach, we share the spin precession frequency in two parts [2]: W(θ) =
W0(θ) + w. The periodical part W0(θ + 2π) = W0(θ) gives spin rotations by ˇelds on the
CO, whereas w is a small distortion (|w| � |W0|) connected with momentum off particle
oscillations. It is evident the solution of the spin motion equation (1) at any azimuth θ
with W(θ) = W0(θ) is a periodical unit vector n0(θ + 2π) = n0(θ), which is the spin
precession axis. A spin rotation around n0(θ) by an angle φ substitutes all spin rotations
by arbitrary local ˇelds along the CO. Similarly to the betatron tunes, we deˇne the spin
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tune ν = φ/(2π). Two other (perpendicular to n0) eigen solutions of the spin equation are
complex vectors η and η∗ rotating clockwise and contraclockwise around n0 with the spin
tune: η(θ + 2π) = η(θ) e−iνθ .

A precession axis for spin of momentum off particles slightly differs from n0 and can be
found in the form n =

√
1 + |C|2 n0 + Re (iCbfgη∗); |C| � 1. Putting this n into (1), we

come in the linear approximation to the short-cut equation

C′ = w⊥ = (w · η∗) . (3)

2. IDEAL FLAT MACHINE

We proceed in our consideration to an ideal �at machine with a uniform vertical magnetic
ˇeld Kz = Bz/〈Bz〉. In this case it is clear that n0 coincides everywhere with the unit vector
along the guiding ˇeld:

n0 = ez and η = (ex − iey) e−iν0θ̃,

where

θ̃ =

θ∫
0

Kzdθ.

From (1) and (2) we see that spin tune ν = 1+ ν0. But in the accelerating frame (ex; ey; ez)
after one particle turn spin rotates only by angle φ = 2πν0 = γ a.

This fact has a very important practical consequence. Since the values of magnet anomalies
a are known to great accuracy, one can deduce the γ-factor with high precision from spin tune
measurement. A knowledge of the particle mass immediately gives an absolute beam energy
calibration. An experimental technique for that is radiofrequency magnetic ˇeld applied
in horizontal plane to kick the spin. On resonant frequency the kicks add up to a beam
depolarization. This can generally be done with great accuracy. This energy calibration
method was called resonant depolarization and by now it has been applied with success at
many accelerators [3].

2.1. Spin Resonances. Focusing elements are unavoidable in any storage ring, as also are
the betatron oscillations. It's appeared immediately as a distortion for the spin motion. A
vertically deviated particle meets the radial component of the focusing magnetic ˇelds. By
using the particle motion equation, this distortion can be described by w⊥ = ν0z

′′ = ν0gzz.
Putting that in (3), one ˇnds that n oscillates around n0 with the betatron tunes νz . In the
resonance case ν = νk = k ± νz (so-called ®intrinsic resonances¯) spin will rotates around
the horizontal axis with a precession frequency wk, which is the resonance strength

|wk| = |Az |
ν0

2π

∮
gz|fz| ei(νk∓νz)θ̃dθ,

where we used the Floke form for the solution of z-motion equation: z = Azfz + c.c. One
can see that the strength of the intrinsic resonances enhances with the particle energy and
the vertical oscillation amplitude. Calculations showed, when ν0 � 100 at any resonances
k = mP (P is a machine periodicity) |wk| ∼ (0.1 ÷ 0.3)ω0 by Az � 1 mm (see Fig. 1).
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Fig. 1. Intrinsic resonance strengths in a RHIC lattice (normalized vertical emittance of 10 π ·mm ·mrad)

Other spin distortions connect with vertical deviations of the CO caused by radial imper-
fection ˇelds Kx = Bx/〈Bz〉. In this case, putting into (3) the forced periodical part of the
vertical motion Zs, we get strengths of imperfection resonances ν = k:

|wk| =
ν0

2π

∮
Z ′′

s e−ikθ̃dθ =
ν0

2π

∮
KxF3(θ) e−ikθ̃dθ,

where F3(θ) = dn/dz′ is a spin response function, which re�ects a sensitivity of n vector to
vertical kicks [4]. Most strong imperfection resonances have also k = mP (m Å integer).
They increase with the energy faster than the intrinsics (F3 ∼ γ). But unlike the intrinsic
resonances, one can adjust the vertical closed orbit to minimize wk up to level depending on
his experimental technics.

3. SPIN RESONANCE CROSSING

Since the spin tune is proportional to the energy spin resonance crossings are unavoidable
at an acceleration. A gap between two imperfection resonances is equal to 440.652 MeV for
electrons and 523.342 MeV for protons. The intrinsic resonances are located symmetrically
around each imperfection resonance. So, the acceleration of polarized particles looks like a
very complicated issue. In the simplest case of a separate resonance ν = νk with a strength wk

a ˇnal polarization ζF after one crossing with tune rate δ̇ = (d(ν − νr ))/dt will be different
from the initial one: ζF = ζ0

(
2e−Ψ − 1

)
, where Ψ = πw2

k/2δ̇ is a spin phase advance in
the resonance zone (tune δ ∼ wk) [5].

When Ψ � 1 (fast crossing) polarization loss is small: δζ � ζ0Ψ. More interesting is
the opposite case: Ψ � 1. It leads to a spin �ip (ζF � −ζ0) with an exponentially low
depolarization: |δζ| = 2ζ0 e−Ψ. Both situations are widely used in accelerator practice. A
suppression of the resonance strength (orbit corrections) or increasing tune rate (tune jump)
leads to the fast crossing and vice versa an artiˇcial resonance enhancement helps to safely
reverse the polarization.
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Let us insert in the ideal �at machine at a part of the orbit 0 ÷ θ1 a solenoid with the
longitudinal magnet ˇeld Ky = By/〈Bz〉, which rotates spin by an angle

φ =
q

2π

θ1∫
0

Kydθ.

Exploring this simple model, we shall give an easy-to-use way to ˇnd the spin tune and
the n0 axis. A general form of a unitary SU2 matrix of a vector rotation by an angle φ
around a unit vector nj can be presented as Tj = cos (φ/2) − i(nj · σ) sin (φ/2). The one
turn spin map will be product of the local matrices Tj : T = TNTN−1 · · ·T2T1, which has
the same unitary form with nj = n0. Hence, one ˇnds easily cos (πν) = 1/2 Tr (T ) and
n0 = −i/sin (πν) Tr (σ · T ).

Practising to a machine with one solenoid, we see that the solenoid shifts the spin tune
cos (πν) = cos (πν0) cos (φ/2) and a direction of the vector n0 is no longer vertical and
depends on the solenoid strength and spin tune.

If the solenoid is short, θ1 � 1, we can take it as δ function like distortion and expand it
in the series of resonances ν = k with equal strengths |wk| = φ/2π.

So, it is possible to provide the adiabatic resonance crossing by increasing the solenoidal
ˇeld. This method was called a partial Siberian snake and is successfully used at many
machines after its ˇrst test at VEPP-2M storage ring in 1976 [6].

The same adiabatic approach to an intrinsic resonance crossing can be realized by RF
dipole working nearby the vertical tune. Under such a condition the spin response function
blows up F3 � 1 and enhances the resonance harmonics many times. This method is
successfully used on strongest intrinsic resonances at AGS [7].

4. SIBERIAN SNAKES

An interesting situation occurs when the rotation angle by the solenoid φ = π. As is easy
to see, the spin tune in this case is always equal to 1/2 independently of ν0. It means a
total exclusion of the spin resonances at acceleration. Moreover, the vector n0 is longitudinal
along the drift opposite to the snake insertion [8].

Spin rotators with similar properties have been named ®Siberian snakes¯. They can be
designed from combinations of longitudinal and transverse ˇelds suitable for each speciˇc
case with one main requirement to be matched with machine lattice. First test of the Siberian
snake idea (solenoid at the IUCF proton storage ring) has shown full suppression imperfec-
tion resonances as well as intrinsic resonances [9]. To minimize machine optics and orbit
distortions, a snake transfer matrix has been done equal to the matrix of a drift L occupied
by the insertion:

Mx =
(

1 L
0 1

)
; Mz = −Mx.

A similar approach is proposed for future HESR storage ring (3.5 ÷ 15 GeV). Two pairs
of solenoids and rotating quads together with the electron cooling solenoid will realize the
optics of the 56 m straight. An angle of each quad rotation depending on ˇelds strengths and
beam energy can be designed as a ˇeld superposition of two superconducting coils Å regular
quadrupole one and second rotated by 45◦.
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Fig. 2. Schematic layout of BNL complex for polarized proton operations

For much higher energy, as we noticed before, transverse ˇelds are more effective for
spin rotations. It turned out that helical magnetic ˇeld conˇguration is most convenient for
these purposes, because it gives less orbit deviations in comparison with regular dipoles.

A scheme from four full twist helical magnets with mirror symmetry of the ˇelds polarity
and helicity is able to rotate spin by 180◦ around arbitrary axis in the horizontal plane.
Moreover, the same magnet combination can work as a spin rotator from vertical direction to
a position in the medium plane by any angle to the velocity [10]. Such a scheme of Siberian
snakes and spin rotators was realized at RHIC (see Fig. 2). Two snakes in each ring with
axis angles ±45◦ also provide the spin tune ν = 1/2 and opposite vertical polarization in the
arcs. Four pairs of the spin rotators deliver the longitudinal polarization in collision points
for detectors STAR and PHENIX. Recently at RHIC, polarized protons in both rings were
accelerated up to the top energy 200 GeV.

5. RADIATIVE POLARIZATION OF ELECTRONS

Electron radiates energy while accelerated. An intensity of this synchrotron radiation
enhances ∼ γ4 and at high energy it determines all beam parameters. Due to the quantum
nature of this radiation the orbital motion gets stochastic kicks. For their turn, the orbit
jumps lead to �uctuations of the precession axis n(θ) and to a spin diffusion Å random
changes of spin projections Sn. This effect spreads considerably the spin resonances, thus
the acceleration of polarized electrons is possible only up to a few GeV.

Fortunately aggravation of electron spin by radiative effects is more than compensated
for by electron self-polarization due to small difference in probabilities of spin-�ip quantum
emission in states ®spin up¯ and ®spin down¯. A calculation of this effect in the homogeneous
magnetic ˇeld [11] has shown that an equilibrium degree of beam polarization ζ = 8/5

√
3 �

0.924 builds up with a characteristic time τp, which can be written (in practical units) as

τp(h) ≈ (R/ρ)
[B(T)]3[E(GeV)]2

. It is easy to estimate that the radiative polarization is available

in most of the electronÄpositron colliders and light source storage rings. It is important
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to remark that radiative polarization is unique method for obtaining high-energy polarized
positrons.

However, real ˇelds in storage rings are far from homogeneous. More full study of
the radiative polarization in real machine ˇelds brings to the equilibrium polarization level
ζ = α−/α+ and polarization time τ = α+ with [12]:

α− = q5
0γ

2〈|B|3 b (n0 − d)〉θ; α+ =
5
√

3
8

q5
0γ2

〈
|B|3

[
1 − 2

9
(n0 ·V) +

11
18

d2

]〉
θ

, (4)

where b is the unit vector along B and d = γ(∂n/∂γ) is a spin-orbit coupling vector that
shows a sensitivity of n axis to the orbital kicks by quantum emission. It is clear that a rate
of the spin diffusion has to be ∼ d2.

Fig. 3. The polarization buildup in VEPP-2M (1976)

Fig. 4. The maximum attained asymptotic polarization levels in different high energy e+e− storage

rings, with and without harmonic spin matching

An early observation of radiative polarization buildup in an e+e− storage ring VEPP-2M
is presented in Fig. 3 [13], from where it is seen the asymptotic polarization (ζ � 0.92) is
nearby the predicted value for the homogeneous ˇeld. However, with increasing particle
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energy a depolarizing in�uence of the spin diffusion grows up (|d| ∼ γ2) and one has to take
speciˇc measures to maximize an achievable degree of polarization. It appeared that the most
effective method is ®harmonic spin matching¯. If the spin tune is far away from dangerous
intrinsic resonances, it is possible to compensate two nearest imperfection resonances by
adjusting corresponding harmonics of the closed orbit and using data from a polarimeter as a
feedback.

By now the radiative polarization has been observed and used in many storage rings in
the energy range from 500 MeV (ACO, VEPP-2M) up to 50 GeV (LEP). As can be seen
from Fig. 4, the polarization level dropped precipitously at high energies at LEP. It indicates
a full overlapping of spin resonances due to the spin diffusion.

CONCLUSION

In many laboratories around the world there is increasing interest in the availability of
spin-polarized beams at high energy and nuclear physics experiments. This is due to a
considerable progress that has been achieved in the ˇeld of polarized beams during the last
3Ä4 decades.

The classical theory for full description of spin behavior in accelerators and storage rings
has been developed, as well as a number of simulating spin tracking codes. On this base
a number of practical approaches have been invented and applied in the experiments. The
invention of Siberian snakes opened ways to the acceleration of polarized protons up to a few
hundreds of GeV.

The phenomena of radiative polarization of electrons and positrons have been discovered
and deeply studied. Now they are used in many machines in the energy range from a few
hundreds of MeV up to tens of GeV. The method of resonance depolarization was performed
to carry out unique metrological experiments of particle masses measurements.
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