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In the presence of the space charge (s.c.) forces the synchrotron oscillations result in periodical
modulation of the s.c. tune shift, periodical crossing of betatron resonances and particle trapping in
resonance islands. The trapping effect for one-dimensional resonance is considered using classical
perturbation theory and «frozen core» approach to calculation of the s.c. forces. The beam losses and
the emittance growth are analyzed for the arbitrary order resonance; the numerical results are given for
the third-order resonance.

YucneHHoe MOAENNPOB HUE IMOMNEPEYHBIX PE30H HCHBIX 3(eKTOB B NMPUCYTCTBUU MPOCTP HCTBEH-
Horo 3 psax [1] mok 3 o, uto 611 rox ps ®TUM 9(eKT M 4 CTHIBI MOTYT 3 XB TBHIB ThCS B CT OHJIbHbBIE
PE30H HCHbIE OCTPOB . MBI H JH3MpYyeM BIMSHUE CHJI MIPOCTP HCTBEHHOTO 3 Pl H MepecedeHue Of-
HOMEPHOTO PE30H HC , UCIOMb3yd KJI CCHYECKYIO TEOPUIO BO3MYIIEHHUI U METOJ «3 MOPOXEHHOIO sfip »
UL p cUeT KYJIOHOBCKHMX CHI. BeiBemeH mpocT s ¢opMyn , Ompemesnsiony s 3 BUCHUMOCTb HeTHHEN-
HOTO KYJIOHOBCKOTO CABHI G€T TPOHHBIX Y CTOT OT MIUTHTYHBI ITONEPEYHBbIX KOJje® HUH I MSATKOM
(hoxycupoBKH M KPYyIIIOro mydk . AH JHM3 CT OWIIBHBIX CEll p TPUC INONEPEeYHbIX Kone® Huil B MPUCYT-
CTBHHU KYJIOHOBCKOT'O CIBUI' O€T TPOHHBIX U CTOT IIOK 3 JI, YTO OKTYIIOJNBH 51 HETMHEHHOCTh M THUTHOTO
OIS TIPU TP BUJIBHOM BBIOOpPE 3H K YMEHBII €T MIUIUTYIBI Koje® HUil 3 XB 4eHHBIX 4 ctuu. H iinen
IIPOCTOH JITOPUTM OLIEHKM IIOTEpb IYYK M POCT BMUTT HC I PE30H HC IPOM3BOJIBHOIO MOPSIK
B TIpoIiecce 3 XB T 4 CTHIl NP MORYISIUU GET TPOHHOH U CTOTHI, BBI3B HHOM CHHXPOTPOHHBIMU KO-
ne6 Husmu. Cp BHEHHE C pe3ylbT T MH YHCICHHOTO MOIEIHMPOB HHUS U PE30H HC TPEThEro MOpsaK
MOATBEPAIO IPIMEHUMOCTh TEOPHH BO3MYLIEHHI K MpoOJieMe KYJTOHOBCKOTO MEepeceueHus Pe3oH HC .

PACS: 29.20.df

INTRODUCTION

Let us consider particle dynamics in circular accelerators and storage rings in the presence
of the space charge (s.c.) fields and the external perturbations creating one-dimensional
betatron resonance. A numerical modeling for the third-order resonance [1] has shown that
due to interaction of these effects the particles may be trapped into the stable islands.

Assuming that main part of the beam is unperturbed, we can use for the analytic studies
so-called «frozen core» model [2]. A theory of the particle motion near the isolated nonlinear
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resonance is developed in papers [3,4] using the canonical «action-phase» variables J, ¢;
specifics of our effect is connected with special form of the nonlinear tune dependence.

In bunched beams the space charge linear density (and consequently the «instantaneous»
s.c. shift) depends on longitudinal coordinate of the particle inside the bunch; therefore, for
some values of unperturbed betatron tune the betatron resonance is crossed periodically due
to the synchrotron oscillations.

The perturbation theory shows that in the presence of nonlinear tune dependence the
particles captured in the stationary separatrix oscillate around its center. For narrow nonlinear
resonance these oscillations are characterized by the following parameters: 1) Jy (value
of action corresponding to the separatrix center); 2) ) (frequency of the particle linear
oscillations around the separatrix center); 3) AJs (the separatrix width). If the motion is
nonstationary, the particles cross the resonance line. A character of the process depends on

Js . . : .
U where §.J, is a shift of Jy during the period of the

particle oscillations around the separatrixs center. This process is examined by A.Chao [5] for
the particular case of the fifth-order one-dimensional resonance. An estimate of the «trapping
efficiency» is made in assumption that all particles with K,q < 1 are trapped and all particles
with K,q > 1 are nontrapped. Here we use the same criterion and assume that all particles
crossing the resonance have K,q < 1 («adiabatic model») and, consequently, are captured in
the nonlinear separatrix.

For generalization we consider a resonance of an arbitrary order; the numerical results
are applied to the third-order resonance. Let us mark that the adiabatic model gives only the
«upper limit» for the losses; nevertheless, it can be useful due to its simplicity and common
theory for arbitrary order resonances.

the «adiabaticity parameter» K,q =

PARAMETERS OF STABLE ISLANDS

Initial Assumptions. Let us assume that transverse motion in horizontal plane (y = 0) is
defined by the following equation:

2 eZ. 22
1+ () o= amm ) e (g ) +od o

In Eq. (1) z is the transverse coordinate of the particle; z is the particle distance from the bunch
center; independent variable s is a length along the ring circumstances; (g is the unperturbed
betatron tune; e is electron charge; m,, is proton mass; (3, are relativistic parameters; Z;
and A; are, correspondingly, charge and atomic numbers of circulating particle; E(x) is the
beam electrical field at the bunch center in the rest system; d(s) is delta function; a,, is an
amplitude of the nonlinear lens. Here we consider axe-symmetric Gaussian beam with space

2 P 2
Ty i ) In Eq.(1) oy, 0y, 0, are

202 202
corresponding rms beam sizes (0, = oy), 0; = V€;0; (g; are rms emittances, J; are the
corresponding beta functions).
In paper [1] the third-order resonance (n = 3) is considered. For numerical analysis
parameters of the SIS-18 synchrotron were taken: machine radius R = 34.4 m, horizontal
synchrotron tune Q9 = 4.3, 0, = 0.01 m. For round Gaussian beam the s.c. force in the

charge density p(x,y, z) proportional to exp (—
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right-hand side (RHS) of Eq. (1) is

2 2
RHS = K exp (—Z—2> é [1—eXp (—%)} . 2)
JZ Ux

Perveance K is connected with linear Coulomb shift AQY by the following formula: K =

2 2
AQSC%(ZQO — AQY.). For SIS-18 we obtain the resonance width g ~ 10~%. Let us note

that in the following text we use normalized dimensionless invariant J = £/&.

Hamiltonian and Equations of Motion. A value of the nonlinear s.c. tune shift AQs.
due to beam—beam interaction was derived in paper [4]. Generalizing this formula for one
beam s.c. interaction, we find that AQs. = AQY. . (J), where function

b= 2 [1-e () (2] o

Here Ip(z) is modified Bessel function of the zeroth order. Using the perturbation theory we
can write the one-dimensional Hamiltonian in variables .J, ¢ (action-phase) for the arbitrary
resonance order n (taking into account only the third order of external nonlinearity) in the
following form:
SH = A 0 J2 2 n/2

= Ay Y (J) + K7 - EJ cos (ng). )]
Here as an independent variable we use «slow angle» 6 = gs/R; all parameters are divided
by the resonance strength g (Avg = AQY /g, AvS. = AQY. /g, K = k/g). Function ¥(J) is

dv(J
defined by the equation ®g.(J) = d<(] ) The canonical equations of motion are
4 = 2J"%sin(ng),
de 5
do . 5)
=5 = Ao - AV &y (J) + KJ — J% L cos (ng).

The phase space topology depends on four parameters: two dimensionless tune shifts Avy,

A2, the octupole nonlinear coefficient K and order of the resonance n. Stationary points are
dJ d dJ
defined by equations — = 0, d_z = (. Then we find from the equation for E: sin (ng) = 0,

cos (n¢) = 1. Substituting these values in the Hamiltonian (Eq.(4)) and an equation for
d
d—(g (the second line of Eq.(5)), we obtain

2 2
Hy(J) = A — AVLU(J) + EJ”/Q + K% (6)
2 .
Avy o(J) = Avg — AL B (J) + EJ?’I + KJ. (7)

The stable fixed point Jy is defined by a solution of the nonlinear equation Avy(J) = 0. The
separatrix parameters can be found by standard procedure [3,4] using Eqgs. (5)-(7).

Let us consider the equation for the separatrix center Avy(Jy) = 0. Firstly, let us note that
in high currents machines the resonance strength g < AQY. (for example, in our numerical
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simulations [1] g = 1074, AQY, = 0.1 and normalized s.c. tune shift Ay, = 1000). Then
at the first approximation we may neglect resonant term, and an equation for the separatrix
center is written as follows: _

A—D (J)+ KJ=0. ®)
Here A = Avg/AVC, K = K/AVS, (A < 1 since it is a condition of resonance crossing).
We see that the equation does not depend on the resonance order and the resonance strength!

Let us find an approximate solution for K =

0, taking into account that for J > 1 &y (J) — *

2/J. Then the approximate solution of Eq.(8)
0

A
is Jop ~2/A =2 ¢ We see that the value

of invariant for the island center goes to infinity
when distance from the resonance goes to zero.
The exact separatrix parameters were found
using the program written in MATHCAD lan-
guage. An example of the results is given in
Fig. 1. We see from Fig. 1 that the positive sign
of the nonlinearity increases the stability (the area

of the separatrix is decreased with K). : :
¢ o Adi . Fig. 1. Dependence of the separatrix para-
Theory of Small Oscillations and Adiabatic- meters Tmin = /T 0 = /7o, Tmax =

ity Cri.teri.on. For narrow nonlinear resonance /7 o he nonlinearity parameter (n = 3,
the oscillations are characterlzeq by the follow%ng AVY. = 1000, Avy = 50, A = 1/20)
parameters: 1) Jy (value of action corresponding

to the separatrix center); 2) 25 (frequency of the

particle linear oscillations around the separatrix center); 3) AJ; (the separatrix width). These
parameters can be found using the technique given in [5]. Let us present the Hamiltonian
H(J, ) in the following form:

2
H(J,¢) = Ho(J) =~ /2 cos (n). 9)
J2
Here Ho(J) = AvgJ — Av2W(J) + K —. Near the thin one-dimensional resonance we can

expand the function Hy(J) in Taylor series on the small parameter AJ = J — Jy; then we
can write H(J, ¢) in a form of the pendulum Hamiltonian:

1
H(J,¢) = =5 G(Jo)(AT)* + F(Jo) cos (x). (10)
2H, )
Here x = n¢, G(Jy) = —naTﬁzu)(J = Jo) = nAVSCddE]J) (J = Jo) + K, F(Jy) =
2(Jo)"/2. The corresponding equations of motion are
d(AJ) ) dx
o F(Jo) sin (x), 0 G(Jo)AJ. (11)

This approximation is valid only for thin resonance (AJs/Jy < 1). The separatrix width is

(12)
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2 [F(Jo)
Jo \l G(Jo)

dd
< 1. For large Jo ———(J =

Thus, the criterion of «narrow separatrix» is K5 = 07

Jo) ~ ﬁ; then we obtain the following estimate for the separatrix width:
0

AJ, = 20/2/n(Jo)" 41242, + K J2). (13)

We see from Eq. (13) that the separatrix area is increased with growth of the coordinate of
the invariant center Jy. A frequency of the linear oscillations in the island is

Qs = VF(Jo)G(Jo). (14)

ADIABATIC RESONANCE CROSSING IN BUNCHED BEAM

Adiabatic Island Parameters. In the bunched beam the linear s.c. density and the
corresponding tune shift periodically oscillate with the synchrotron frequency; that results in
crossing of the resonance «islands». When the island crossing is «adiabatic», a particle can
be trapped into the island if the island area S is such that it increases during the passage.
According to the theory, a particle remains trapped until the island area returns back to the
same value where the original trapping occurs. The typical example of the trapped particle
trajectory is given in Fig. 2.
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Fig. 2. Trapping of particle during one synchrotron oscillation: a) single particle invariant; b) phase
space (in normalized units)

In adiabatic approximation the parameters of the captured island coincide with stationary
ones. For Gaussian bunch the s.c. tune shift is

2
Avge(u) = AV exp (—%) . (15)

Here vy = \/Qs/g, u = z/0s, z is deviation from the bunch center. For K the separatrix
characteristics depend on resonance number n and three normalized parameters: space charge
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tune shift Av2, tune distance from the resonance Ay and longitudinal variable u. Numerical
simulations data (n = 3, AQSC =0.1, AQy =1/60, g = 10*4) correspond to the following
normalized variables: Av®. = 1000, Avy = 167. Dependence of the separatrix parameters
on u is plotted in Fig. 3 (the picture coincides with results of the numerical simulations). We

see from Fig. 3 that the separatrix disappears if v > u;, where u, is determined by condition

u2
Avg = AV exp (——t); then

2
AvS\ 1
u U =4/2In (Al/()) =24/2In (X) (16)

3
Near u; the separatrix center is defined by the following relation: Jy = g(ut —u).

15 T T T

2u

Fig. 3. Dependence of the invariants of the separatrix characteristic points on the normalized longitudinal
coordinate u (n = 3, AVSC = 1000, Avp = 167); dotted curve corresponds to the separatrix center

Adiabaticity Criterion. If the motion is nonstationary, the particles cross the resonance
line. A character of the process depends on the «adiabaticity parameter» K,q = 6Jo/Jo,
where d.Jy is a shift of Jy during the period of the particle oscillations around the separatrix
center. Let us assume that Jo = Jo(u), u is a slow changing parameter depending on
independent variable . Change of .Jy during one period of transverse oscillations inside the
separatrix

dJydu?2m  dJydu 2m
oJp=——F—F—"— = ———————, 17
T duddQ,  du dI \JF(J0)CJo) a7
Then the adiabaticity criterion is
qu _ 5.]0 - dJ() du s (18)

T Jy du dO F(Jo)

Neglecting the separatrix width, we suppose that Jy = .J, where J is particle invariant. Then
we obtain the following condition of the resonance crossing (see Fig. 3):

3
ug = ur(J) = ug (1—8—UtJ). (19)
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Strictly speaking, condition of the adiabaticity is K,q < 1; however, here we will use
Chao’s condition [5] (K,q < 1) to determine the capture area. Then we obtain a necessary
condition for uy with account of the adiabaticity criterion (here b = 3/4mv uy):

2
UO<UQ(J)_\/(Z7J”/2)2+U% <1—§J> . (20)

Different areas in plane wg, J are plotted in Fig. 4. Of course, the boundaries between regions
are diffused; for example, the particles in area 2 can increase their invariants due to diffusion
crossing and then go to «adiabaticity regions».

uy
2 T

1

0 2 4J

Fig. 4. Separation of different areas in plane uo, J (n = 3, b =0.2): area / (0 < up < u1(J)) — no
resonance crossing; area 2 (u1(J) < uo < u2(J)) — adiabatic resonance crossing; area 3 (uz(J) <
ug < oo) — diffusion resonance crossing

Beam Losses and Emittance Growth. Let us calculate a number of captured particles.
2
The distribution on amplitudes uq for Gaussian beam is defined by f(ug) = ug exp (—%);

integrating on ug from us(J) up to uz(J), we obtain the following expression for a number
of captured particles:

an P 1 3\ b2
~ = / exp l—J—E (Ut—gJ) ] [1—exp (— 5 )]dJ. 21)
0

For weak resonance g — 0, vs = Qs/g — oo and, consequently, b — 0; then uz(J) —
u1(J) and the adiabaticity area goes to zero. For strong resonance vs = @s/g — 0 and,
consequently, b — oo (adiabatic limit). Neglecting the term in brackets in RHS of Eq. (21),
we obtain that the number of captured particles is

AN
=

AC(A). (22)

Here due to Eq. (16)

cw= [ ow |- (1-3u) - (3) |0 @)
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For small values of parameter A we have that C(A) ~ 1.3. The captured particle is lost if
its maximal invariant (at the bunch center) exceeds the chamber aperture Jyy, (Jo(0) > Jiim)-
In a frame of our simplified model, we have the following approximate condition of the

2 1
particle loss: — > Jim, AQ% > ~AQoJiim. If the
A 2 14 x x T

captured particles are not lost, then the capture results
in an increase of the average emittance since part of the
synchrotron period is spent by the particle inside the is- J

land. The average invariant during the capture period is |, 4
1 1 J
Jay ~ E[JO(O) +J] = R Taking into account that

the particle spends inside the separatrix only part of period,

2 min J
which is defined by u(ug) = — arcsin [uf()] , we find }‘.34 4_135 41.36 41_37 438
s Uuo .
that a change of the average invariant is &
Fig. 5. Dependence of J on Q.
[e%e) uz(J)
1 J ud
AJ,y = exp(—J) X + 3 dJ UQ exXp ) /L(Uo, J)duo
0 ul(J)

(24)
This integral is calculated numerically for SIS-18; the results are given in Fig.5 (comparison
with data of numerical simulations [1] gives satisfactory coincidence).

CONCLUSIONS

The analytic approach gives deep insight into the mechanism of the Coulomb resonance
crossing; it allows us the straight forward scaling of the parameters for an arbitrary resonance
order. Besides, we discover an interesting mechanism of suppression of s.c. losses and the
emittance growth using the octupole nonlinearity with correctly chosen sign.

In the future we are going to consider crossing of two-dimensional betatron resonance and
to apply the results in analysis of s.c. effects in designed high-current rings: SIS100 (FAIR
project, Germany) and TWAC (ITEP, Moscow).
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