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INDIVIDUAL EVENTS AND MATHEMATICAL
FORMALISM OF QUANTUM MECHANICS

D.A. Slavnov1

Department of Physics, Moscow State University GSP-2, Moscow

We describe a scheme for constructing quantum mechanics in which the Hilbert space and linear
operators are only secondary structures of the theory, while the primary structures are the elements of
a noncommutative algebra (observables) and the functionals on this algebra, associated with the results
of a single observation.
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The act of calculation (including quantum) or of communication is an individual event.
However, there is no adequate counterpart of an individual event in a standard mathemat-
ical formalism of quantum mechanics [1]. I describe a scheme of generalization of the
mathematical formalism, in which such an adequate counterpart is present.

The fundamental notion of both classical and quantum physics is an observable. In a
physical system, an observable is an attribute whose numerical value can be obtained using
some measuring procedure. In what follows, I assume that all observables are dimensionless,
which implies ˇxing some system of units.

In each measurement, the investigated physical system is subject to the action from the
measuring device. Therefore, all measurements can be divided into two types: reproducible
and nonreproducible. A characteristic feature of reproducible measurements is then that
repeated measurement of the same observable gives the originally obtained value.

The problem of reproducibility is of particular interest in the case that a number of
observables are measured for the same physical system. Let us ˇrst measure observable Â,
then observable B̂, then again observable Â and, ˇnally, observable B̂. If the results of the
repeated measurements coincide with the original ones, I call such measurements compatible.
If there are devices allowing one to make combined measurements of observables Â and B̂,
I call such observables compatible or simultaneously measurable.

Experiment shows that a key difference between classical and quantum physical systems
is as follows. For classical systems, the experiment can always be designed such that the
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measurements of any two observables are compatible. But a quantum system always has
observables for which a compatible measurement cannot be realized in any case.

I let A+ denote the set of all observables in a physical system under consideration and
let Qξ denote its maximal subset of compatible observables. It is clear that for a classical
system, this subset coincides with the set A+ itself. For a quantum system, it can be veriˇed
that they are inˇnitely many [2]. The index ξ, ranging a set Ξ, distinguishes one such subset
from another. A given observable can belong to different subsets Qξ simultaneously.

It is easy to verify that each subset Qξ can be endowed with the structure of a real
commutative associative algebra. Indeed, experiment shows that for any compatible observ-
ables Â and B̂, there exists a third observable D̂ such that, ˇrst, it is compatible with the
observables Â and B̂, and, second, in each simultaneous (compatible) measurement of these
three observables, the measurement results are related by

AB = D.

Because this relation is satisˇed independently of the values of the individual constituents,
it can be assumed that the observables themselves by deˇnition satisfy the same relation:

ÂB̂ = D̂.

We can similarly deˇne the addition operation for two compatible observables and the
operation of multiplication of an observable by a real number.

For a given physical system, using compatible measurements, we assign to each observable
Â ∈ Qξ a measurement result:

Â → A = ϕξ(Â).

This deˇnes a functional ϕξ(Â) on the algebra Qξ. By the deˇnition of the algebraic
operations in Qξ, this functional is a homomorphic map of Qξ into the set of real numbers.

Such a functional is called a character of a real commutative associative algebra (see,
e.g., [3]).

These characters possess a lot of speciˇc properties, which allow formulating the recipe
of their construction [2].

The mathematical representation of a physical system is the set of observables of this
system. In what follows, I identify the physical system with the set of its observables in
which relations among observables are ˇxed. I identify a subset of observables with the
corresponding physical subsystem. In doing this, I do not assume that the subsystem must
necessarily be somehow isolated from the rest of the system. The subsystem may not be
isolated spatially and can interact with other parts.

Next discuss the notion of a state of a physical system. First consider a classical system.
In this case, a state of the physical system is understood as its attribute that uniquely prede-
termines the results of measurements of all the observables. Mathematically, a state is usually
given by a point in phase space. But it can be easily reckoned that this is just one speciˇc
version of ˇxing a certain functional on the algebra of observables, which is a character of
this algebra.

To be free from the choice of any speciˇc version, I deˇne a state of a classical system
as a character of the algebra of observables of this system.

This deˇnition extends to a quantum system as follows.
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I consider the set A+ of observables of a quantum system as a collection of subsets
Qξ (ξ ∈ Ξ), each of which is a maximal subset of compatible observables. Each of these
subsets has the structure of a real commutative associative algebra and can be considered the
algebra of observables of some classical subsystem of the quantum system. These classical
subsystems are open, but we can still describe the state of each of them using a character
ϕξ(·) of the corresponding algebra Qξ.

I say that an elementary state of a physical system is a collection ϕ = [ϕξ] (ξ ∈ Ξ) of
functionals ϕξ(·) each of which is a character of the corresponding algebra Qξ.

In each individual measurement, we can measure the observables belonging to any given
Qξ algebra. The results of such a measurement are deˇned by the corresponding functional
ϕξ(·) belonging to the collection ϕ.

Thus, the result of each individual measurement of observables of a physical system is
determined by the elementary state of this system.

This statement holds for both classical systems (in which case the collection ϕ = [ϕξ]
consists of a single functional) and quantum systems (in which case the collection ϕ = [ϕξ]
consists of inˇnitely many functionals).

I note that I do not assume the validity of the equality

ϕξ(Â) = ϕξ′(Â), if Â ∈ Qξ ∩ Qξ′ . (1)

Although deceptively natural, this assumption has no experimental justiˇcation (see [2]).
That condition (1) is not satisˇed implies that a measurement result can depend not only

on the system investigated (on its elementary state) but also on the type of device used for
measurement.

I say that measuring devices belong to the ξ type if for a system in the elementary state
ϕ = [ϕξ], the measurement result for each observable Â ∈ Qξ is described by the functional
ϕξ(·). Obviously, condition (1) may be satisˇed for some ϕ. If (1) holds for all the Qξ

containing Â, then we say that the elementary state ϕ = [ϕξ] is stable for the observable Â.
An elementary state of a quantum system cannot be uniquely ˇxed experimentally because

the most that can be measured in a single experiment is the observables belonging to one
algebra Qξ. As a result, only values of the functional ϕξ(·) can be determined. The elementary
state ϕ remains otherwise undeˇned.

For determining the values of other observables, an additional experiment must be per-
formed involving a device incompatible with the one used previously. The new device
uncontrollably perturbs the elementary state that had occurred after the ˇrst measurement.
Therefore, the information obtained in the ˇrst experiment becomes obsolete.

In view of this, it is convenient to unite the elementary states ϕ having the same restriction
to the algebra Qξ (i.e., the functional ϕξ(·)) into a class ϕξ-equivalent elementary states. Thus,
only the equivalence class to which the elementary state of the considered system belongs can
be established in a quantum measurement.

A reproducible measurement of observables belonging to an algebra Qξ is reminiscent of
the procedure for preparing a quantum state in the standard quantum mechanics. Accordingly,
the class {ϕ}ϕξ

of ϕξ-equivalent elementary states ϕ that are stable on the subalgebra Qξ is
said to be a quantum state Ψϕξ

.
Defying the widely shared opinion that the Kolmogorov probability theory [4] is inap-

plicable to quantum systems, I try to use it.



20 Slavnov D. A.

The fundamental notion of the Kolmogorov probability theory is the probability space [4,
5]). This is a triple (Ω,F , P ). The ˇrst term in the triple, Ω, is a set (space) of elementary
events.

The deˇning properties of elementary events are as follows: (a) one and only one ele-
mentary event occurs in each trial; (b) elementary events exclude each other. Because two
nonorthogonal quantum states do not exclude each other, they cannot be elementary events.
In our case, the role of an elementary event is played by the elementary state ϕ.

In addition to the elementary event, the notion of an event is also introduced. Each event
F is identiˇed with some subset of the set Ω. An event F is considered to have occurred if
one of the elementary events belonging to this subset (ϕ ∈ F ) occurred. The collections of
subsets F of the set Ω are endowed with the structure of a Boolean algebra.

I recall that the Boolean algebra of a set Ω is the system of subsets of this set with three
algebraic operations deˇned on it: taking the union of subsets, the intersection of subsets,
and the complement of each subset in Ω. Accordingly, the second term in the triple is some
Boolean algebra F .

Finally, the third term in the triple is a probability measure P . This is a map of F into
the set of real numbers P (F ) satisfying the conditions (a) 0 � P (F ) � 1 for all F ∈ F ,
P (Ω) = 1 and (b) P (

∑
j

Fj) =
∑
j

P (Fj) for any denumerable collection of nonintersecting

subsets Fj ∈ F . The probability measure is deˇned only for the events from the algebra F .
For elementary events, the probability may not exist in general.

From the physical standpoint, the choice of a Boolean algebra F is determined by the
characteristics of the measuring devices used. The point is that in reality, measuring devices
have a ˇnite resolving power and therefore cannot always differentiate one elementary event
from another. They can then only be used to establish that a given experiment involves one
of the elementary events belonging to some subset.

Here is the key difference between classical and quantum physical systems. In the classical
case, we can inˇnitely increase the resolving power and use devices that allow simultaneously
measuring the values of an arbitrary number of observables. In the quantum case, compatible
measurements can be performed only for observables belonging to a given algebra Qξ. Such
measurements correspond to a certain type of Boolean algebra, denoted by Fξ in what follows.

The elements of this Boolean algebra differ in the values (intervals of values) of observ-
ables in the algebra Qξ. More detailed measurements in which the values of observables not
belonging to Qξ are additionally measured are not allowed, because they are incompatible
with the previous measurements. Therefore, the Boolean algebras whose elements additionally
differ in the values of observables not belonging to Qξ are useless. No probability measure
corresponds to such Boolean algebras.

The choice of some Boolean algebra Fξ, mathematically speaking, makes the set Ω of
elementary events into a measurable space (Ω,Fξ). In an experiment, this space corresponds
to a pair: the physical object under investigation and a certain type (type ξ) of measuring
device allowing compatible measurements of observables from the algebra Qξ.

I say that a quantum ensemble is a set of physical systems that are described by the same
set A+ of observables and are in some quantum state. Experiment shows that a quantum
ensemble has probabilistic properties. It must therefore admit the introduction of a probability
space structure. As a result of a reproducible measurement, the quantum ensemble passes
into a new quantum ensemble with another probability distribution.
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I consider the quantum ensemble of systems that are in a quantum state Ψϕη (η ∈ Ξ).
The space Ω(ϕη) of elementary events for this ensemble is given by the equivalence class
{ϕ}ϕη . Let a type-ξ device be used in the experiment. This corresponds to a measurable
space (Ω(ϕη),Fξ) and a probability measure Pξ .

I measure an observable Â ∈ Qξ and say the event FA occurs in the experiment if the

registered value of Â is not greater than A. Let Pξ(A) = P (ϕ : ϕξ(Â) � A) denote the
probability of this event. If the observable Â also belongs to an algebra Qξ′ , then a ξ′-type
device could be used to determining the probability of FA. In this case, a different value
Pξ′(A) could be obtained for the probability. But experiment shows that the same probability
is obtained in this case, i.e.,

P (ϕ : ϕξ(Â)) � A) = P (ϕ : ϕξ′(Â) � A). (2)

I introduce the notation

PÂ(dϕ) = P (ϕ : ϕ(Â) � A + dA) − P (ϕ : ϕ(Â) � A),

where the subscript ξ on the functional ϕ(Â) is omitted in view of (2).
To ˇnd the mean of an observable Â in a quantum state Ψϕη , I need not consider

observables that are incompatible with Â. Therefore, instead of considering the quantum
system, I can restrict myself to considering its classical subsystem whose observables are
described by the algebra Qξ (Â ∈ Qξ). To determine the mean 〈Â〉, I can then use the
mathematical formalism of classical probability theory (see, e.g., [5]) and write

〈Â〉 =
∫

ϕ∈Ψϕη

PÂ(dϕ)ϕ(Â) ≡ Ψϕη(Â). (3)

Formula (3) deˇnes a functional Ψϕη(Â) (a quantum mean) on the set A+.

Obviously, Ψϕη(αÂ) = αΨϕη (Â), where α is any real number.

Experiment also shows that for any Â ∈ A+ and B̂ ∈ A+, there exists an observable
D̂ ∈ A+ such that the relation

Ψϕη(Â) + Ψϕη(B̂) = Ψϕη(D̂)

holds for each quantum state Ψϕη(·). Such an element D̂ can by deˇnition be considered the

sum of Â and B̂. This means that the set A+ can be endowed with the structure of a real
linear space such that the Ψϕη(·) are linear functionals on this space.

Due to properties of characters ϕξ(·) these functionals are positive.

Because any observable Â ∈ A+ is compatible with itself, it follows that the operation of
taking the square of Â can be deˇned on the set A+ following the same scheme as Qξ.

This allows endowing the linear space A+ with the structure of a real Jordan algebra [6,7]
with the product of elements Â and B̂ deˇned as

Â ◦ B̂ =
1
2

(
(Â + B̂)2 − Â2 − B̂2

)
. (4)

This product is manifestly commutative but not associative in general.
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All the Jordan algebras are divided into two classes: special and exceptional. Whether
exceptional Jordan algebras can be used in quantum physics is unknown. In all quantum
models considered to date, the set of observables can be endowed with the structure of a
special Jordan algebra. In line with this historical experience, we shall be limited to special
algebras of Jordan.

A Jordan algebra is special if there exists an associative (not necessarily real and commu-
tative) algebra A such that the set A+ as a linear space is a subspace in A. Therefore, we
shall assume the set A+ of observables coincides with the set of Hermitian elements of the
involutive algebra A.

The elements of the algebra A are called dynamical variables in what follows. Any
element Û ∈ A is uniquely represented as Û = Â + iB̂, where Â, B̂ ∈ A+. Therefore,
the functional Ψϕη( · ) can be uniquely extended to a linear functional on A as Ψϕη(Û) =
Ψϕη(Â) + iΨϕη(B̂).

It is possible to show (see [2]) that the equality

sup
η

sup
ϕη

Ψϕη(Û∗Û) = sup
η

sup
ϕη

ϕη(Û∗Û)

holds; therefore (see [2, 7]), a norm can be introduced in the algebra A using the equality

‖Û‖2 = sup
η

sup
ϕη

ϕη(Û∗Û).

Because the functional ϕη is a character of Qη, we have ϕη([Û∗Û ]2) = [ϕη(Û∗Û)]2.
This implies that

‖Û∗Û‖ = ‖Û‖2. (5)

A complete normalized involutive algebra whose norm satisˇes additional condition (5) is
called a C∗ algebra [3]. Therefore, the algebra of quantum dynamical variables can be
endowed with the structure of a C∗ algebra.

A remarkable property of C∗ algebras is that any C∗ algebra is isomorphic to a subalgebra
of linear bounded operators in an appropriate Hilbert space H [3]. A faithful representation of
the C∗ algebra is said to be realized in the space H. The relation of a C∗ algebra to a Hilbert
space is realized by the so-called canonical GelfandÄNeimarkÄSegal (GNS) construction (see,
e.g., [7, 8]).

It is easy to show that average value of an observable Â, which is deˇned by the equation

〈Â〉 =
∫

ϕ∈Ψϕη

PÂ(dϕ)ϕ(Â) ≡ Ψϕη(Â),

can be represented in the form
〈Φ|Π(Â)|Φ〉. (6)

Here |Φ〉 is a vector in the Hilbert space H constructed by GNS, and Π(Â) is the operator
that corresponds to an observable Â in space H. This allows the full use of the mathematical
formalism of the standard quantum mechanics in calculating quantum means in the proposed
approach.
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At the same time, the proposed approach differs essentially from the standard quantum
mechanics. In the latter, a relation of type (6) is postulated (Born's postulate [9]) and is
the starting point for constructing the so-called quantum probability theory. But unlike the
classical probability theory, the quantum probability theory is not yet constructed as a nice
mathematical scheme.

Here, formula (6) is derived as a consequence of physically justiˇed statements and of
the classical probability theory. In addition, we indicate when the formula is valid: Eq. (6) is
applicable for calculating means of observables over a quantum ensemble.

The approach I have presented by no means rejects standard quantum mechanics. The
founding fathers of quantum mechanics erected a remarkable ediˇce. But they began the
construction with the second 
oor, the description of probabilities and means.

Therefore, the stability of this ediˇce has required a large amount of shoring in the form of
a series of ®principles¯: the superposition principle, the uncertainty principle, the principle of
complementarity, the projection principle, the indistinguishability principle, and the principle
of the absence of trajectories.

All these principles appear rather artiˇcial and are not easily amenable to physical in-
terpretation. The main task of these principles is to justify the mathematical formalism of
the standard quantum mechanics. True, this mathematical formalism has proved amazingly
serendipitous, but this is not the case with its physical interpretation.

It is not without reason that discussions of the physical interpretation of quantum mechan-
ics still vividly proceed, although the term ®physical interpretation¯ itself seems quite strange.
If quantum mechanics is a physical theory, then it must not need any physical interpretation.
By using this term, we admit, be it willingly or not, that quantum mechanics is not a physical
theory but a mathematical model.

In this work, I have attempted to construct quantum mechanics just as a physical theory,
based on experimental data.

The central point of the described approach is the introduction of the notion of an ®elemen-
tary state¯, which is absent in the formalism of the standard quantum mechanics. This notion,
on the one hand, gives a clear mathematical counterpart of such a physical phenomenon as
an individual experimental act.

On the other hand, it allows using the well-developed formalism of classical logic and
classical probability theory. It must be borne in mind here that although the references to the
so-called quantum logic and quantum probability theory may be rather frequent, it has so far
been impossible to give them the structure of a clear-cut complete theoretical scheme.

Based on the notion of an elementary state and using the classical probability theory, we
can completely reproduce the mathematical formalism of the standard quantum mechanics and
simultaneously show its applicability domain. This formalism applies to quantum ensembles.
This is a very important type of ensemble but not the most general one by far. In particular,
this formalism is not suitable for describing an individual event.
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