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SYMPLECTIC STRUCTURE OF QUANTUM PHASE
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Starting from the projective interpretation of the Hilbert space, a special stochastic representation of
the wave function in Quantum Mechanics (QM), based on soliton realization of extended particles, is
considered with the aim to model quantum states via classical computer. Entangled solitons construction
having been earlier introduced in the nonlinear spinor ˇeld model for the calculation of the EinsteinÄ
PodolskyÄRosen (EPR) spin correlation for the spin-1/2 particles in the singlet state, another example
is now studied. The latter concerns the entangled envelope solitons in Kerr dielectric with cubic
nonlinearity, where we use two-soliton conˇgurations for modeling the entangled states of photons.
Finally, the concept of stochastic qubits is used for quantum computing modeling.
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1. INTRODUCTION.
STOCHASTIC REPRESENTATION OF QM

In recent years a very fascinating idea to put QM into geometric language attracts the
attention of many physicists [1]. The starting point for such an approach is the projective
interpretation of the Hilbert space H as the space of rays. To illustrate the main idea, it is
convenient to decompose the Hermitian inner product 〈·|·〉 in H into real and imaginary parts
by putting for the two L2 vectors |ψ1〉 = u1 + ıv1 and |ψ2〉 = u2 + ıv2

〈ψ1|ψ2〉 = G (ψ1, ψ2) − ıΩ (ψ1, ψ2), (1)
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where G is a Riemannian inner product on H and Ω is a symplectic form; that is,

G (ψ1, ψ2) = (u1, u2) + (v1, v2); Ω (ψ1, ψ2) = (v1, u2) − (u1, v2),

with (·, ·) denoting standard L2 inner product. The symplectic form Ω revealed in (1) can
acquire its dynamical content if one uses the special stochastic representation of QM suggested
in [2Ä4].

In this representation the one-particle wave function appears to be the sum of soliton
solutions with random parameters, such as their velocities, center positions and phases. The
soliton solution is considered as the image of the extended particle, and the wave function
proves to be the vector of the random Hilbert space, the standard QM rules being restored in
the point-like limit, when the size of the extended particle-soliton tends to zero. Earlier the
case of spin-1/2 particles-solitons was considered within the framework of the Heisenberg-
like nonlinear spinor ˇeld model [5]. In the present paper another example is considered,
concerning the photons as the envelope solitons in Kerr dielectric with cubic nonlinearity.
For simplicity the 1D soliton solutions are used.

Now recall that the n particles wave function ΨN in the stochastic representation of QM
is given by the following sum of random ˇelds:

ΨN(t, r1, . . . , rn) = (�nN)−1/2
N∑

j=1

n∏
k=1

ϕ
(k)
j (t, rk), (2)

where N � 1 stands for the number of trials (observations) and ϕ
(k)
j is the one-particle

auxiliary ˇeld function for the jth trial:

ϕ(k)(t, r) =
1√
2

(
νkφ(k) +

ıπ(k)

νk

)
, (3)

with the constants νk satisfying the normalization condition

� =
∫

d3x |ϕ(k)|2,

where π(k)(t, r) stands for the conjugate momentum corresponding to the real ˇeld φ(k) and
� is the Planck constant. It is necessary to underline that the internal scalar product in H
includes the averaging over random parameters of particles-solitons.

2. ENTANGLED OPTICAL SOLITONS IN KERR
DIELECTRIC

The interest to the optical envelope solitons in cubic media is widely known [6, 7]. We
intend to show that in the stochastic representation of QM one can use these soliton solutions
to the nonlinear Maxwell equations for modeling entangled states of photons. Consider the
Kerr nonlinear dielectric, with the permeability ε being the quadratic function of the electric
strength E:

ε = ε0 + ε1|E|2, (4)
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where ε0 and ε1 stand for some positive constants. The Maxwell equations read

rotE = −∂tB, div (εE) = 0, (5)

rotB = ∂t [εE] , div B = 0, (6)

with the unit vacuum velocity of light. From (5) and (6) one immediately derives the nonlinear
wave equation for E:

rot2 E = −∂2
t [ε(E)E] . (7)

Substituting into (7) the following vector ˇeld:

ER = eRA sech (kξ), ξ = z − V t, (8)

where eR stands for the unit vector corresponding to the right circular polarization:

eR = ex cosφ + ey sin φ, φ = ωt − k0z, (9)

one gets three algebraic equations for the constant parameters A, V , k, k0, ω:

ε0
(
ω2 − k2V 2

)
= k2

0 − k2, (10)

ε1A
2
(
9k2V 2 − ω2

)
= 2k2

(
ε0V

2 − 1
)
, (11)

k0 = ωV
(
ε0 + 3ε1A

2
)
, (12)

where the natural supposition concerning the envelope pulse was made:

k0 � k. (13)

Introducing the independent parameters X = k2/ε0ω
2, Z = 3A2ε1/ε0, one easily ˇnds

from (10), (11) and (12) the minimal value of X : Xmin ≡ X0 ≈ 0.049 and estimates the
following useful parameters:

λ2 ≡ k2V 2

ω2
∈

[
1
27

, X0

]
;

k2

k2
0

∈ [X0, 1] .

Now we intend to search for the magnetic ˇeld B = rotA. To this end, it is necessary to
ˇnd the transversal vector potential:

A = −
t∫
E dt. (14)

The integral in (14) can be found via the integration by parts that gives the asymptotic series.
Thus, inserting (8) into (14), one gets

AR =
A

ω
sech (kξ)

[
eL − eRλ tanh(kξ) + O(λ2)

]
. (15)

From (15) one easily ˇnds the magnetic ˇeld

BR =
A

ω
sech (kξ)

[
eL

(
k0 − kλ + 2kλ tanh2(kξ)

)
+ eR(k − λk0) tanh (kξ) + O(λ2)

]
.

(16)
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It is worthwhile to underline that the soliton solution corresponding to the left circular polar-
ization can be obtained from (8) and (15) via the transposition eR =⇒ e′L; eL =⇒ e′R, where
the denotation is used:

e′R = ex cosφ − ey sin φ, e′L = ex sin φ + ey cosφ.

Using the solution found, it is possible to calculate the integrals of motion describing the
soliton conˇguration, that is, the physical observables: the energy W , the spin S and the
momentum P. These observables can be constructed via the Lagrangian density

L =
1
4

(
2ε0E2 + ε1E4 − 2B2

)

if one follows the standard variational procedure:

W =
1
4

∫
dz

(
2ε0E2 + 3ε1E4 + 2B2

)
, (17)

S =
∫

dz ε[EA], (18)

Pz =
∫

dz ε (E∂zA) . (19)

Inserting (8) and (16) into (17), (18) and (19), one gets

W ≈ A2

k

[
ε0 + ε1A

2 +
1

3ω2

(
3k2

0 − 4kλ + k2
)]

, (20)

SR = −SL = ezS, S ≈ 2A2

3kω

(
3ε0 + 2ε1A

2
)
, (21)

P = ezP, P = k0S. (22)

Now we deˇne the subsidiary complex vector function analogous to that in (3):

ϕ =
1√
2

(
νA +

ı

ν
π

)
, π = −εE, (23)

where the constant ν is deˇned by the normalization condition

� =
∫

dz |ϕ|2. (24)

Stochastic representation of the one-particle wave function ΨN can be deˇned as the linear
combination of the functions (23) determined in N independent trials:

ΨN (t, z) = (�N)−1/2
N∑

j=1

ϕj(t, z). (25)
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Thus, formula (25) gives the stochastic realization of the one-photon wave function via the
inˇnite dimensional objects-solitons. For calculating the mean values of observables one can
use the standard quantum mechanical rule:

〈A〉 =
∫

dz E [Ψ∗
NlAlmΨNm] , (26)

with Alm standing for some Hermitian operator (matrix) and E signifying the averaging
over random soliton parameters. For example, the spin operator has the standard form
(Sk)lm = −ı�εklm.

Now we consider two-soliton (photon) singlet states, that is, construct the entangled
solitons conˇguration with the zero spin and momentum:

ϕ(12)(t, z1, z2) =
1√
2

[
ϕL(t,−z1) ⊗ ϕR(t, z2) − ϕR(t,−z1) ⊗ ϕL(t, z2)

]
. (27)

Now it is not difˇcult to ˇnd the stochastic wave function for the singlet two-soliton entangled
state:

ΨN (t, z1, z2) =
(
�

2N
)−1/2

N∑
j=1

ϕ
(12)
j , (28)

where ϕ
(12)
j corresponds to the entangled solitons conˇguration in the jth trial. We hope that

the formalism of entangled solitons can also be applied to 3D optical solitons for modeling
the real photons.

3. CONCLUSION. SIMULATION OF STOCHASTIC
QUBITS BY PROBABILISTIC BITS

Now we intend to explain how the stochastic qubits introduced previously could be
simulated by standard probabilistic bits. To this end, one should deˇne the random phase Φj

for the jth trial in our system of n solitons-particles. Let ϕ(k)(r) denote the standard (etalon)

proˇle for the kth soliton. The most probable position d(k)
j (t) of the kth soliton's center for

jth trial can be found from the following variational problem:

∣∣∣∣
∫

d3xϕ
∗(k)
j (t, r)ϕ(k)

(
r− d(k)

j

)∣∣∣∣ → max,

thus giving the random phase structure

Φj =
n∑

k=1

arg
∫

d3xϕ
∗(k)
j (t, r)ϕ(k)

(
r − d(k)

j

)
. (29)

The random phase (29) can be used for simulating quantum computing via generating the
following K random dichotomic functions:

fs(θs) = sign [cos (Φj + θs)] , s = 1, K, (30)
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with θs being arbitrary ˇxed phases. It is worthwhile to compare the standard EPR correlation
P (a,b) = − cos θ with the random phases one for the case of n = 2 particles:

E (f1 f2) = 1 − 2
π
|�θ|,

where �θ = θ1 − θ2. The similarity of these two functions of the angular variable θ seems to
be a good motivation for the K qubits simulation by the dichotomic random functions (30)
popularized in paper [8]. This very simple model of stochastic qubits simulation can be
employed for simulating Bi-photons, EPR states and other entanglement states. We hope
that this model will be useful for Shor's and Grover's Quantum Algorithms realization. All
elementary qubits operations can be realized via classical computer through simulating the
phase structure of realistic solitons by the generator of random numbers connected to the
model solitons' generator, e.g., Kerr dielectric with the optical excitations or magnetic with
the excitations of localized spin inversion domains.
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