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ANTISYMMETRIZATION PROCEDURE
OF IDENTICAL FERMIONS STATES

A. Deveikis1

Department of Applied Informatics, Vytautas Magnus University, Kaunas, Lithuania

An efˇcient procedure for antisymmetrization of an arbitrary system of identical fermions is pre-
sented. The approach is based on a simple enumeration scheme for antisymmetric A-particle states
and an efˇcient algorithm for calculation of the coefˇcients of fractional parentage (CFPs) for a single
j-shell with isospin. The developed approach is implemented in a new procedure for the calculation of
the electric quadrupole moment matrix elements of light atomic nuclei in the isospin formalism.
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1. ANTISYMMETRIZATION OF MANY-PARTICLE STATES

The antisymmetric wave function of an arbitrary system of identical fermions may be
obtained by calculation of the A-particle antisymmetrization operator matrix Y on the basis
of appropriate functions with a lower degree of antisymmetry [1]. The coefˇcients of fractional
parentage are those eigenvectors of the antisymmetrization operator matrix Y that correspond
to unit eigenvalues. An efˇcient algorithm for large-scale calculations of the CFPs for a
single j-shell with isospin is presented in [2, 3]. The procedure for constructing of the one-
particle multi-shell CFPs from one-particle single-shell CFPs was obtained by Levinsonas [4].
The one-particle multi-shell CFPs enable the antisymmetric A-particle oscillator function to
be expressed in the form of linear combinations of vector coupled products of antisymmetric
functions of A−1 nucleons and one-particle wave functions. The separation of a nucleon from
the initial conˇguration can be accomplished in all possible ways consistent with the required
triangular relations, thus giving rise to the general angular momentum recoupling coefˇcient
describing the transformation between different momentum coupling schemes. So, the one-
particle multi-shell CFPs deˇnition contains only single-shell CFPs and the corresponding
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general angular momentum recoupling coefˇcient. It should be noted, that any sum over
some set of quantum numbers does not appear at all

〈(EKΔJΠT ); eljπt||EKΔJΠT 〉 =

= (−1)νr

(nr

A

)1/2

〈(eljt)nr−1
r (ΔJT )r; (eljt)r||(eljt)nr

r (ΔJT )r〉×

× 〈((J1T1 . . . JrTr . . . JkTk)JT , jrtr)JT ||(J1T1 . . . (JrTr, jrtr)JrTr . . . JkTk)JT 〉. (1)

In this approach many-particle antisymmetrical states are characterized only by a well-deˇned
set of quantum numbers: the number of oscillator quanta E, conˇguration K (with speciˇed
intermediate coupling), the total angular momentum J , parity π, isospin T , and one additional
integer quantum number, Δ, which is necessary for unambiguous enumeration of the states [2].
(elj)n in Eq. (1) denotes the single shell. The list of occupied shells with the number of
nucleons found in each is called a conˇguration. A single bar over the quantum numbers
indicates the parent state, subscript r refers to the rth shell in the conˇguration, and superscript
nr is the number of particles contained in the rth shell. The speciˇcation of single shell is
followed by its total momenta and Δ. However, the general angular momentum recoupling
coefˇcient is independent of one-particle quantum numbers and Δ, so their notations are not
indicated in its speciˇcation. The total momenta of single shells indicated in the general
angular momentum recoupling coefˇcient expression are vector coupled in ascending order
if another sequence explicitly displayed by parentheses is not introduced. The integer is

νr =
k∑

i=r+1

ni, where sum runs over all shells standing to the right from the rth shell.

〈(elj)nr−1
r (ΔJT )r; (elj)r||(elj)nr

r (ΔJT )r〉 denotes the one-particle CFP of the rth shell.
It is well known that the general angular momentum recoupling coefˇcients with the

arbitrary number of the angular momenta can be written explicitly in terms of the ClebschÄ
Gordan expansion. This can be illustrated with the following example:

〈((j1, j2)j12, j3)j|((j3, j2)j32, j1)j〉 =

=
1

(2j + 1)

∑
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[
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] [
j12 j3 j
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]
×

×
[
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m3 m2 m32

] [
j32 j1 j
m32 m1 m

]
, (2)

where j1, j2 and j3 are the intermediate angular momenta which can, in principle, be coupled
to the total angular momentum j in any other way, different from that in the bra- and ket-
vectors in the above expression. Expression (2) can be straightforwardly generalized in the
case of the arbitrary number and the coupling scheme of angular momenta.

2. ELECTRIC QUADRUPOLE MOMENTS

The electric quadrupole moment operator of an A-nucleon nucleus is deˇned as

Q(2)
0 =

√
16π

5

A∑
i=1

r2
i Y

(2)
0 (θi, ϕi) δmt(i),−1/2. (3)



Antisymmetrization Procedure of Identical Fermions States 59

Here Y(2)
0 (θi, ϕi) is the spherical harmonic of the angular coordinates θi and ϕi, and the

sum extends over the protons only. In nuclear physics the electric quadrupole moment of an
atomic nucleus is deˇned as the mean value in the substate M = J

Q = 〈EKΔJΠTMJMT |Q(2)
0 |EKΔJΠTMJMT 〉MJ=J . (4)

In the impulse approximation, the operator that describes the electromagnetic moment, is
a sum of one-particle operators each of which describes the interaction of an independent
nucleon with the electromagnetic ˇeld

Q(2)
0 =

A∑
i=1

Q(2)
0 (i), (5)

here Q(2)
0 (i) refers to the ith particle. Since the wave functions are antisymmetric with respect

to all nucleons, all contributions of the summation over i in Eq. (5) to the matrix element of

the electric quadrupole moment operator Q(2)
0 are equal. Thus, one may deal only with the

last term Q(2)
0 (A)

Q = A 〈EKΔJΠTMJMT |Q(2)
0 (A)|EKΔJΠTMJMT 〉MJ=J . (6)

The required isolation of particle A from the wave function, more conveniently, may be
achieved with the fractional parentage expression of the oscillator shell-model wave function

ΦJΠTMJMT

EKΔ (x1 . . . xA) =
∑

(EKΔJΠT )
eljπt

〈(EKΔJΠT ); eljπt||EKΔJΠT 〉×

×
{
ΦJΠT

EKΔ
(x1 . . . xA) ⊗ φjπt

el (xA)
}

JMJ TMT

. (7)

After applying the usual Racah algebra technique, the matrix element of the electric
quadrupole moment operator assumes the form convenient for calculation

Q = Ab22
[
J 2 J
J 0 J

]√
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2

(
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3
2

)
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[
l 2 l
0 0 0

] {
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J J J

}{
l 2 l
j 1

2 j

}
×

×
∑

MT mt

[
T t T

MT mt MT

]2

δmt,−1/2. (8)

Here b is the usual oscillator length.
The derived formula (8) was used for calculation of the electric quadrupole moment

matrices for all 0p-shell atomic nuclei in a complete 0�ω basis. The obtained electric quadru-
pole moment matrix will be labelled by sets of quantum numbers uniquely enumerating the
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The quadrupole moments Q of nuclear oscillator A-particle states uniquely characterized by the
total angular momentum J and the total isospin T . Here Z is the number of protons
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corresponding states. Among these are: shells constituting the conˇguration, intermediate
momenta, and Δs. Obviously, wave functions from subspaces characterized by the mentioned
quantum numbers should mix, when any real interaction is involved. So, the reasonable result
can be obtained only after diagonalization of the Hamiltonian matrix in the corresponding
subspace. The only exception is when total J and T uniquely characterize the A-particle
state, i.e., when the dimension of the subspace is one. The electric quadrupole moments of
such states are presented in the Table. For better comprehension of the obtained results the
oscillator length b was taken as equal to one, and the free-space values of the proton and
neutron charges were used. The calculation data coincide with extreme-single-particle model
predictions, in the cases where this model can be applied.
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CONCLUSION

In this paper we present a new formula and procedure for the calculation of the electric
quadrupole moment matrix elements of light atomic nuclei in the isospin formalism. The
proposed procedure consistently outlines the principle of antisymmetrization. A distinct
feature of this procedure is in the complete rejection of group-theoretical classiˇcation of
antisymmetric many-particle states. This is a remarkable circumstance, because a beneˇt
could be gained due to simplicity and comprehensibility of such a kind of calculations. The
method is based on the observation that multi-shell coefˇcients of fractional parentage can be
expressed in terms of single-shell CFPs [4]. The latter are calculated using the algorithm [2]
for a spectral decomposition of an antisymmetrization operator matrix Y . The calculation
procedures for the evaluation of the electric quadrupole moments have been implemented in
the computer code and the electric quadrupole moment matrices for all 0p-shell atomic nuclei
in a complete 0�ω basis were calculated. The presented approach could be tailored for an
arbitrary system of identical fermions.
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