IMucem B DYAZ. 2009. T.6, Ne7(156). C.70-76

KOMIIBIOTEPHBIE TEXHOJIOTHU B ®U3UKE

MULTILAYER EVOLUTION SCHEMES
FOR THE FINITE-DIMENSIONAL
QUANTUM SYSTEMS IN EXTERNAL FIELDS
O. Chuluunbaatar ®, V. P. Gerdt®, A. A. Gusev?®, |M. S. Kaschiev
V. A. Rostovtsev ©, Y. Uwano©, S. I. Vinitsky ¢

“Joint Institute for Nuclear Research, Dubna

b
’

®Institute of Mathematics and Informatics, BAS, Sofia, Bulgaria
“Future University-Hakodate, Hakodate, Japan

The operator-difference multilayer (ODML) schemes for solving the time-dependent Schrodinger
equation (TDSE) till six order accuracy by a time step are presented. The reduced schemes for solving
a set of the coupled TDSEs are devised by using a set of appropriate basis angular functions and a finite
element method with respect to a hyperradial variable. Convergence by a number of the basis functions
and efficiency of the numerical schemes are demonstrated in the case of an exactly solvable model of
the two-dimensional oscillator in time-dependent electric fields.

Ipexnct BIeHBI ONIEP TOPHO-P 3HOCTHBIE MHOTOCIOMHBIE CXEMbI JUIS PEeLIeHHMS HECT LMOH PHOro
yp BHeHus Illpeamarep [0 ImecToro MOpSAK TOYHOCTH IO BpeMEHHOH nepeMeHHOH. BriBemeHsl pe-
AYLUPOB HHBIE CXEMBI UL pellieHus H 60op CBS3 HHBIX HECT LMOH pHbIX yp BHeHuil Illpexunrep c mno-
MOIIBI0 H 60p COOTBETCTBYIOIIMX YITIOBBIX 6 3MCHBIX (PyHKIMI M METOJ KOHEYHBIX ®JIEMEHTOB OTHO-
CHUTEIbHO TUIepp AU JIbHO# nepeMeHHOH. CXOOQUMOCTh 110 YUCTy 6 3UCHBIX (PYyHKIMH U 3(PeKTHBHOCTD
YHCIIEHHBIX CXEeM JEeMOHCTPHUPYIOTCS B CIIyd € TOYHO pell eMOH MOIENH JByXMEPHOIO OCLUULIATOP BO
BHEILLIHUX IEPEMEHHBIX BJIEKTPUYECKHX ITOJISX.

PACS: 03.67.Ac, 01.30.Cc, 03.67.-a

INTRODUCTION

Solving the TDSE with a required accuracy is needed for the control problems of quantum
systems [1], the decay problem in nuclear physics [2], the ionization problems of atomic and
molecular physics in pulse fields or impact collisions beyond a dipole approximation [3].
For solving the TDSE in a finite-dimensional region with respect to spacial variables one
conventionally seeks a required wave-packet solution in a form of expansion over appropriate
angular basis functions and further discretization of hyperradial equations, for example, the
finite-difference [4], finite-element [5], spline [6] methods, etc.

Usually a rate convergence by a number of angular basis functions is controlled by solving
corresponded stationary Schrodinger equation [7]. However, in some special cases of long-
range effective potentials acting in asymptotic regions, like confinement potentials, a key
problem consists in additional study [8]. So, using exact solvable models of the TDSE, one
can have an additional experience in the field.



Multilayer Evolution Schemes for the Finite-Dimensional Quantum Systems in External Fields 71

In this paper, a new computational method is applied to solve the TDSE, in which the
unitary splitting algorithm with uniform time grids [9] is combined with an application of
the Kantorovich or Galerkin reductions to a set of the TDSE by a hyperradial variable [5]
and the finite-element method (FEM) [10] and an interpolation method in nonuniform spatial
grids [5]. The efficiency, convergence and accuracy of the elaborated numerical schemes are
confirmed by benchmark calculations of an exactly solvable model of the two-dimensional
oscillator in time-dependent external fields [1].

1. ODML EVOLUTION SCHEME

Let us consider the d-dimensional TDSE with a self-adjoint Hamiltonian H(r,¢) and a
governing function f(r,t) on the time interval ¢ € [to, T):

Zaxlfgt«,t) — He,O)U(r ), W(r,to) = Uo(r), || =/|\Il(r,t)|2dr 1L
H(r,t) = Ho(r) + f(r,t), Ho(r)= —%VE +U(r), flr,ty) =0. ?)

We also require continuity of derivatives of the control function f(r,t) and continuity of
solutions ¥(r,t) € W3(R? ® [tg, T]) and ¥o(r) € Wi(R?). We solve the above Cauchy
problem (1), (2) in the uniform grid Q,[to, T] = {to,tk+1 = tx + 7,tx = T} with time
step, 7, in the time interval [ty,T] by means of the ODML calculation scheme [9] rewritten
after factorization of a gauge transformation, with operator S, in the following symmetric
form:
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The coefficients, oM ¢ =1,...,M, M > 1), stand for the roots of the polynomial
equation, 1 Fy(—M,—2M,2M1/«) = 0, where 1 F; is the confluent hypergeometric func-
tion. This scheme has the accuracy of order O(72M) with respect to time step 7, if we
choose L = [M/2]. Below we consider the scheme with M < 3, that is sufficient for
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a practical utilization. For the Hamiltonian given in (2) the operators AéM) and S,EM)
read as
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where f = f(r,t.), fz onf(x,t)—y, ,--» U=U(r) and t. =t + 7/2.

2. REDUCED ODML SCHEME

In the framework of a coupled-channel hyperspherical adiabatic approach [5], known in
mathematics as the Kantorovich method [4], the partial wave function W(r,t) is expanded
over the one-parametric basis functions {B;(€%;7)}7L,

N

U(r,t) = Bj(r)x;(r,t). (6)

j=1

In Eq. (6), the vector-function x(r,t) = (x1(r,t),...,x~(r,t))T is unknown, and the surface
function B(€;7) = (B1(Q;7),..., Bn(Q;7))T is an orthonormal basis with respect to the
set of angular coordinates €2 for each value of hyperradius r which is treated here as a given
parameter. The functions B;(;7) are determined as solutions of the following parametric
eigenvalue problem [7,11]:

(—ﬁﬁé +U (r>> Bj(;r) = Ej(r)B; (%7), (7

where the generalized self-adjoint angular momentum operator A?z corresponds to the
d-dimensional Laplace operator V2. The eigenfunctions of this problem satisfy the same
boundary conditions in angular variable Q) for ¥(r,¢) and are normalized as follows:

(BB, = [Busn) By do = 5, ®)

where d;; is the Kronecker symbol.
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After minimizing the Rayleigh—Ritz variational functional (see [11]), and using expan-
sion (6), Eq. (1) is reduced to a finite set of N ordinary second-order differential equations

ax(r,t
o1 Xéi )=H(r,t)x(r,t), x(r;to) = Xo(r),
©)
1 10 aa0 0, 1 0rQ)

H(r,t) = r¢ — +V(r,t) + Q(r)

C2rd—17Qr or or + rd—1 or '

Here V(r,t), I and Q(r) are matrices of dimension N x N, whose elements are given by the
relation

Vij(r,t) = 0ij + 5 g

Ei(T)+Ej(T) 1 <aB,(Q,7’)
or
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1 0B; (%
Iij = (Sij, Qij(r) = —5 <Bl(Q,’r)‘#>Q . (10)

The boundary conditions and normalization condition have the form

_ . . . d—1y/ . _
x(0,6) =0, if  min T eV, (r, 1)) = oo,

. _ 0 . - _
lim 41 (IE - Q(r)) x(r,t) =0, if min lLimr? 1 V;(rt)] <oo,  (11)

r—0 1<jKN r—0
lim x(r,t) =0,
/ (x(r,t)" x(r,t)r? =t dr = 1. (12)
0

In this case we obtain the finite N x N matrix operator-difference scheme for unknown
vector-functions x(r, t), analogous to (3)
I—1, AM o A g, gV, (13)

where A,&M) and S,EM) are matrix operators of dimension N x N given by the relation

AS) =H(r,t.), Sl(cl) =0,
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ZO00 _ <Bi(Q;r)‘Z(M)‘Bj(Q;T)>Q.
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The operator C,(:’) is equal to zero for (VZf) = 0 and in other case has the form

4 A1
@_ T [ 1 0 4 4x 0 o 0 ap 0 1 0rQ(r)
C' =730 ( iy, P+ V) -Q g+ g ——p =], (19

where D(r), V(r) and Q(r) are matrices of dimension N x N, whose elements are given by
the relations
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3. THE EXACTLY SOLVABLE TWO-DIMENSIONAL MODEL

The TDSE for a two-dimensional oscillator (or a charged particle in a constant uniform
magnetic field) in the external governing electric field with components F4(t) and FEs(t)
nonequal to zero in the finite time interval ¢ € [0, 7] in the dipole approximation and atomic
units has the form [1]

) 1/ 92 0?2 w 0 0
Z§¢($1,y1,t) =-3 (8—95% + B—yf> d(x1,y1,t) + 5 (xla—yl - ylﬁ—xl> d(x1,y1,t) +

2

+ %(ﬁ +yD)d(1,y1,t) — (21 E1(t) + 11 Ba (1) b1, y1,1).  (17)

The transformation to a rotated coordinate system with frequency w/2, 1 = x cos (wt/2) +

ysin (wt/2), y1 = ycos(wt/2) — xsin (wt/2), and polar coordinates x = rcos(d), y =
rsin(f), leads to the following equation:

110 0 11 82+w2r2
2T8rrar 2 r2 92 8

+7(f1(t) cos (0) + fa(t) sin ()| o(r,0,t), (18)

9 4(r,6,1) =

’L& +

where fi(t) = —E1(¢) cos (wt/2) + Ea(t)sin (wt/2), fa(t) = —E1(t)sin (wt/2) — Ea(t)x
x cos (wt/2). Using the Galerkin projection of solutions by means of the angular basis
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Fig. 1. The absolute values of the difference |pext(z,y,t) — ¢(x,y,t)| at ¢ = 2 (a) and the test
results of the discrepancy functions Er(t,5), j = 1,2, 3 (dash-dotted, dashed and solid curves) for the
approximations of order M = 1,2, 3 with the time step 7 = 0.00625 (b)

functions B;(#)

N
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we arrive at the matrix equation (9) with Q(r) = 0 for unknown coefficients {x;(r, )}, in
the interval ¢ € [0, T]. The initial functions x;(r,t) at ¢ = 0 are chosen in the form

1
x1(r,0) = Vw exp <—Zwr2> , xi(r0)=0, j>=2. (20)

Note that Eq. (17) has an exact solution ¢ext(,y,t) for a partial choice of the field E;(t) =
= a; sin(w;t) which provides a good test example to examine efficiency of numerical algo-
rithms and a rate of convergence of the projection by a number N of radial equations and by
time 7. We choose w = 47, w1 = 37, w2 = 57,07 = 24 and ag = 9. For these parameters
the absolute value of the solution ¢(r,8,t) should be periodical with period 7" = 2.

To approximate the solution x;(r,t) in the variable , we used the finite-element grid
Qr[rmin, Tmax) = {"min = 0, (120), 1.5, (60), "max = 4} and time step 7 = 0.0125, where the
number in the brackets denotes the number of finite-element in the intervals. Between each
two nodes we apply the Lagrange interpolation polynomials to the p = 8 order. To analyze
the convergence on a sequence of three double-crowding time grids, we define the auxiliary
time-dependent discrepancy functions Er(¢,7), j = 1,2, 3, and the Runge coefficient 5(¢)

N Tmax
)= [ Ilnt) =X oPrdn

v=1 § (21)
Er(t,1) — Er(t,2
Er(t,2) — Er(t,3)|’

~—

B(t) = log,
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where X,/ (r,t) are the numerical solutions with the time step 7; = 7/27~!. For the function
Xv(7,t) one can use the numerical solution with the time step 74 = 7/8. Hence, we obtain
the numerical estimates for the convergence order of the numerical scheme (13), that strongly
correspond to theoretical ones (3(t) = O (t) = 2M. Figure 1 displays absolute values of the
difference |@ext(x, y,t) — d(x, y, t)| shown at t = 2 and behavior of the discrepancy functions
Er(t;4), j = 1,2,3, and the convergence rates [Sps(t), M = 1,2, 3, at some time values ¢
for N = 30, respectively. The figures show that one can solve a key problem: a control of
needed number N of angular basis functions should be done by solving not only stationary
Schrédinger equation [7], but also by solving the exact solvable TDSE. Such benchmark
calculations give an opportunity to control distribution of moving region by space variables
which are covered by time-dependent wave packet expanded by the angular basis.

CONCLUSION

The developed schemes provide a useful tool for calculations of threshold phenomena
in the formation and ionization of (anti)hydrogen-like atoms and ions in magnetic traps [3],
quantum dots in magnetic field [12], channelling processes [13, 14], potential scattering with
confinement potentials [8] and control problems for finite-dimensional quantum systems [1].
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