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QUANTUM FIDELITY OF GAUSSIAN STATES
IN OPEN SYSTEMS
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National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania

Using the expression of the fidelity for the most general Gaussian quantum states, the behaviour of
the quantum fidelity is described for the states of a harmonic oscillator interacting with an environment,
in particular with a thermal bath. By taking a correlated squeezed Gaussian state as initial state, we
calculate the quantum fidelity for both kinds of undisplaced and displaced states, and for different values
of the squeezing and correlation parameters and of the environment temperature.

C MCHoNmb30B HUEM BBIP XEHHS TOYHOCTH 11 H HOOliee OOLIMX I' yCCOBBIX KB HTOBBIX COCTOSIHHIA
OIUC HO MOBENEHNE KB HTOBOI TOYHOCTH ISl COCTOSIHUM I' PMOHMYECKOTO OCIMIIISTOP , B3 UMOACHCTBY-
IOILIETO C OKPYXEHHUEM, B 4 CTHOCTH C TEIUIOBbIM pe3epBy poM. Eciiu B34Th KOppe/lUpOB HHOE CX TOe
I YCCOBO COCTOSHME K K H Y JIbHOE COCTOSTHHE, MOXKHO BBIYUCIHUTH KB HTOBYIO TOYHOCTb K K JISI He-
CMEUICHHBIX, T K U CMEIIEHHbIX COCTOSHHI IIPU P 3JIMYHBIX 3H YEHUIX OKPYX IoIledl TeMiep Typel U
I p METPOB CXK TUS U KOPPENSIUH.

PACS: 03.67.Mn, 01.30.Cc, 03.67.-a

INTRODUCTION

In recent years there has been an increased interest in the study of Gaussian states of
continuous variable systems used in quantum information processing. Usually, the quantum
fidelity for quantum optics experiments, in particular quantum teleportation experiments, is
calculated for pure coherent states as input states. However, in real experiments the in-
put quantum states have some non-negligible degree of mixedness, achieved mainly due to
the decoherence phenomenon which takes place during the interaction of the system with
its environment. In the framework of the theory of open systems based on quantum dy-
namical semigroups, we consider a one-dimensional harmonic oscillator interacting with an
environment, in particular with a thermal bath. Our purpose is to study the influence of the
environment on the time evolution of the quantum fidelity for Gaussian states of the con-
sidered system. The structure of the paper is the following. In Sec.1 we briefly review the
basic formalism for the calculation of the quantum fidelity for a general pair of single-mode
Gaussian states. The time evolution of the harmonic oscillator in the theory of open quantum
systems is described in Sec.2. By taking a correlated squeezed Gaussian state as initial
state, the quantum fidelity of this initial pure state and an arbitrary time mixed state of the
considered system is calculated in Sec.3. A summary is given in the final section.
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1. FIDELITY OF GAUSSIAN STATES

For two quantum states, described by the density operators p; and ps, the fidelity F'
is defined as Uhlmann’s transition probability [1] by F(p1,p2) = [Tr(/p1 p2r/p1) /2% A
general single-mode Gaussian state p is completely characterized by its first and second
moments and can be represented by a correlated squeezed state [2]. The fidelity of two
displaced thermal states was calculated in [3] and the fidelity of a large class of single-mode
Gaussian states was also obtained in [4].

Introducing the matrices A; (i = 1,2) of the form

A — ( Qqq  Qpq ) (1)
)
Gpg  Gpp
whose elements are connected with the variances 044, 0, and covariance o, of canonical
position ¢ and momentum p operators through the relations ayq = 204q, app = 20,,/h>,

apq = 20pe/N and denoting the mean amplitudes of p; and ps by a; = ( ngi ) (i=1,2),
D

we obtain the following formula for the quantum fidelity of two general Gaussian quantum

states:

T(AL+ Ay 3], 2
\/F \/— xp [—6" (A1 2) "] (2)
where = as — o and A = det (A1 + Asg), 6 = (det Ay — 1)(det Ay — 1). If py is a pure
state, then det A; = 1 and the fidelity (2) becomes

1

= xp [—AT (A4 2) ).
Vdet((A A2 P A+ AT ®

2. MASTER EQUATION FOR THE HARMONIC OSCILLATOR

In the axiomatic formalism based on quantum dynamical semigroups, the irreversible time
evolution of a damped harmonic oscillator is described by the following quantum Markovian
master equation for the density operator p(t) [3,6]:

dp i

= = 7 Horl = 2h(k+u)[q pp +ppl + 5= (A = 1)[p, pg + qp]—

2h(
210, lg, )~ 2 . )+ 2 (g o)) + [ 6l)) )

The harmonic oscillator Hamiltonian H is chosen of the most general quadratic form

H=Ho+g(qp+pq), Hy=—p "+ —F—¢q (5)

and the quantum diffusion coefficients D,,,, D44, Dpq and the dissipation constant \ satisfy the
252

AR
following fundamental constraints: Dy, > 0, Dgq > 0 and Dy, Dyq— D3, > z = In the par-

Hy
ticular case when the asymptotic state is a Gibbs state pg(00) = exp ( ) / Tr exp ( kT)
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these coefficients have the form [6]

At o A—p h i B
Dpp—Tﬁmwcoth%, qu—T%COthﬁ, qu—O, (6)

where T is the temperature of the thermal bath. From the master equation (4) we can obtain
the equations of motion for the expectation values o, and o, of coordinate and momentum
and the equations of motion for the variances o4y, 0p, and covariance o, [6]. In the
underdamped case (w > @) we obtain o4(c0) = o,(c0) = 0 and the asymptotic values of
0qq(t), opp(t), ope(t) in the case of a thermal bath with coefficients (6) reduce to [6]

hw hmw hw
Yo coth T’ Opp(00) = 5 coth T Opg(00) = 0. (7

0qq(00) =

3. CALCULATION OF QUANTUM FIDELITY

We consider a harmonic oscillator with the initial Gaussian wave function

0= (gmmm) o [ (1 Zol®) (6 o0 + 0] .

2m04q

where 044(0) is the initial spread; op,(0) the initial covariance, and o,(0) and ¢,(0) are the
initial averaged position and momentum of the wave packet. The initial state (8) represents a
correlated coherent state [2] with the variances and covariance of coordinate and momentum

hd hmw hr
04q(0) = 5 opp(0) = %1 —r2)’ opq(0) = A ©))
Here, § is the squeezing parameter which measures the spread in the initial Gaussian packet
and r, with |r| < 1, is the correlation coefficient at time ¢ = 0. For § = 1 and r = 0 the
correlated coherent state becomes a Glauber coherent state.

If the initial wave function is Gaussian, then the density matrix remains Gaussian for
all times [7]. We take the initial Gaussian wave function (8) as the pure state 1 with the
corresponding matrix A and the state at an arbitrary time ¢ described by the density matrix
p(t) as the state 2 with the corresponding matrix As. When the initial Gaussian wave
function (8) is not displaced, ar; = a2 = 0 and the exponential factor in expression (3) of the
quantum fidelity becomes 1. In this case we obtain (0 = 0440, — 05,)

h
F(t) = . 10
O = o0 700 T o @@ o Oon ) = 203 0)on ) (1

Introducing the expressions obtained in [5,6] for the variances of the coordinate and momen-
tum, expression (10) takes the following explicit form when the initial state is a squeezed
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state (r = 0) (02 = w? — p?, e = hw/2kT):

1 —2At 1
F(t) = Q{e_‘l’\t {1 - (6 + 5) coth e + coth? e} +6292 <w2 (2 +6% + 7 4 coth? e) +
LY . 2 2 1 2 2
+4pQ (5 — 5 sin(2Qt) cothe + |w” [ 2 — §° — 7)) 41%(1 — coth® €)| cos(2Qt) | |+

—1/2
+1+<5+%>cothe+coth26} . (D

The time evolution of the quantum fidelity (11) as a function of the temperature, dissipation
constant and squeezing parameter of the initial Gaussian state is represented in Figs. 1-3. In
the particular case of an initial coherent state (9 = 1) and for 7" = 0, the quantum fidelity is
constant, F'(t) = 1. For large times we get the following expression of the asymptotic fidelity

Fig. 1. Dependence of quantum fidelity F' (11) on time ¢ and temperature 7" via C' = coth %, for
w=1,A=01Lpu=0,r=0.a)0=10b06=2

Fig. 2. Dependence of quantum fidelity F' (11) on time ¢ and squeezing coefficient §, for w = 1,
A=01,7r=0.a)p=0,C=1(T"=0);b) p=0.08 C=5/3
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Fig. 3. Dependence of quantum fidelity F' (11) on time ¢ and dissipation constant A, for w =1, =0,
r=0,C=3.a)d=1b6d=2

when the initial state is a correlated squeezed state:

2

- .
1 - h h?
\/ +<6+5(1_r2)>cot €+ coth®e

It depends on the environment temperature and parameters of the initial state, but does

not depend on the dissipation constant. For a coherent state (§ = 1) we obtain F'(c0) =
2

F(o0) =

(12)

— . When the temperature of the environment is 7" = 0, expression (12) becomes,
1+ cothe
2V

for r =0, F(oc0) = )

we get always F'(oc0) < 1.

When the initial Gaussian wave function (8) is displaced, in the previous expressions of
the asymptotic fidelity the exponential factor exp (—F) of Eq.(3) is present, where E for
large times (t — oo) and for a coherent state has the form

and F(oco) = 1, if the initial state is a coherent state. For § # 1,

B(oo) = m?w?o(0) + 02(0)
)= hmw(1 4 cothe)

(13)

CONCLUSION

Using the expression of the fidelity for the most general Gaussian quantum states, we
have investigated the behaviour of the quantum fidelity for the states of a harmonic oscillator
interacting with an environment, in particular with a thermal bath. The time evolution of
the considered system was described in the framework of the theory of open systems based
on quantum dynamical semigroups. By taking a correlated squeezed Gaussian state as the
initial state, we calculated the quantum fidelity for both kinds of undisplaced and displaced
states. We have also described the behaviour of the time evolution of the quantum fidelity
in dependence on the squeezing and correlation parameters characterizing the initial Gaussian
state and on the dissipation constant and temperature characterizing the environment.
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