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QUANTUM FIDELITY OF GAUSSIAN STATES
IN OPEN SYSTEMS
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Using the expression of the ˇdelity for the most general Gaussian quantum states, the behaviour of
the quantum ˇdelity is described for the states of a harmonic oscillator interacting with an environment,
in particular with a thermal bath. By taking a correlated squeezed Gaussian state as initial state, we
calculate the quantum ˇdelity for both kinds of undisplaced and displaced states, and for different values
of the squeezing and correlation parameters and of the environment temperature.
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INTRODUCTION

In recent years there has been an increased interest in the study of Gaussian states of
continuous variable systems used in quantum information processing. Usually, the quantum
ˇdelity for quantum optics experiments, in particular quantum teleportation experiments, is
calculated for pure coherent states as input states. However, in real experiments the in-
put quantum states have some non-negligible degree of mixedness, achieved mainly due to
the decoherence phenomenon which takes place during the interaction of the system with
its environment. In the framework of the theory of open systems based on quantum dy-
namical semigroups, we consider a one-dimensional harmonic oscillator interacting with an
environment, in particular with a thermal bath. Our purpose is to study the in
uence of the
environment on the time evolution of the quantum ˇdelity for Gaussian states of the con-
sidered system. The structure of the paper is the following. In Sec. 1 we brie
y review the
basic formalism for the calculation of the quantum ˇdelity for a general pair of single-mode
Gaussian states. The time evolution of the harmonic oscillator in the theory of open quantum
systems is described in Sec. 2. By taking a correlated squeezed Gaussian state as initial
state, the quantum ˇdelity of this initial pure state and an arbitrary time mixed state of the
considered system is calculated in Sec. 3. A summary is given in the ˇnal section.
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1. FIDELITY OF GAUSSIAN STATES

For two quantum states, described by the density operators ρ1 and ρ2, the ˇdelity F
is deˇned as Uhlmann's transition probability [1] by F (ρ1, ρ2) = [Tr(

√
ρ1 ρ2

√
ρ1)1/2]2. A

general single-mode Gaussian state ρ is completely characterized by its ˇrst and second
moments and can be represented by a correlated squeezed state [2]. The ˇdelity of two
displaced thermal states was calculated in [3] and the ˇdelity of a large class of single-mode
Gaussian states was also obtained in [4].

Introducing the matrices Ai (i = 1, 2) of the form

A =
(

aqq apq

apq app

)
, (1)

whose elements are connected with the variances σqq , σpp and covariance σpq of canonical
position q and momentum p operators through the relations aqq = 2σqq , app = 2σpp/�

2,

apq = 2σpq/� and denoting the mean amplitudes of ρ1 and ρ2 by αi ≡
(

αqi

αpi

)
(i = 1, 2),

we obtain the following formula for the quantum ˇdelity of two general Gaussian quantum
states:

F =
2√

Δ + δ −
√

δ
exp

[
−βT(A1 + A2)−1β

]
, (2)

where β = α2 − α1 and Δ = det (A1 + A2), δ = (detA1 − 1)(detA2 − 1). If ρ1 is a pure
state, then detA1 = 1 and the ˇdelity (2) becomes

F =
1√

det((A1 + A2)/2)
exp

[
−βT(A1 + A2)−1β

]
. (3)

2. MASTER EQUATION FOR THE HARMONIC OSCILLATOR

In the axiomatic formalism based on quantum dynamical semigroups, the irreversible time
evolution of a damped harmonic oscillator is described by the following quantum Markovian
master equation for the density operator ρ(t) [5, 6]:

dρ

dt
= − i

�
[H0, ρ] − i

2�
(λ + μ)[q, ρp + pρ] +

i

2�
(λ − μ)[p, ρq + qρ]−

− Dpp

�2
[q, [q, ρ]] − Dqq

�2
[p, [p, ρ]] +

Dpq

�2
([q, [p, ρ]] + [p, [q, ρ]]). (4)

The harmonic oscillator Hamiltonian H is chosen of the most general quadratic form

H = H0 +
μ

2
(qp + pq), H0 =

1
2m

p2 +
mω2

2
q2 (5)

and the quantum diffusion coefˇcients Dpp, Dqq , Dpq and the dissipation constant λ satisfy the

following fundamental constraints: Dpp > 0, Dqq > 0 and DppDqq−D2
pq � λ2

�
2

4
. In the par-

ticular case when the asymptotic state is a Gibbs state ρG(∞) = exp
(
−H0

kT

) /
Tr exp

(
−H0

kT

)
,
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these coefˇcients have the form [6]

Dpp =
λ + μ

2
�mω coth

�ω

2kT
, Dqq =

λ − μ

2
�

mω
coth

�ω

2kT
, Dpq = 0, (6)

where T is the temperature of the thermal bath. From the master equation (4) we can obtain
the equations of motion for the expectation values σq and σp of coordinate and momentum
and the equations of motion for the variances σqq , σpp and covariance σpq [6]. In the
underdamped case (ω > μ) we obtain σq(∞) = σp(∞) = 0 and the asymptotic values of
σqq(t), σpp(t), σpq(t) in the case of a thermal bath with coefˇcients (6) reduce to [6]

σqq(∞) =
�

2mω
coth

�ω

2kT
, σpp(∞) =

�mω

2
coth

�ω

2kT
, σpq(∞) = 0. (7)

3. CALCULATION OF QUANTUM FIDELITY

We consider a harmonic oscillator with the initial Gaussian wave function

Ψ(q) =
(

1
2πσqq(0)

)1/4

exp
[
− 1

4σqq(0)

(
1 − 2i

�
σpq(0)

)
(q − σq(0))2 +

i

�
σp(0)q

]
, (8)

where σqq(0) is the initial spread; σpq(0) the initial covariance, and σq(0) and σp(0) are the
initial averaged position and momentum of the wave packet. The initial state (8) represents a
correlated coherent state [2] with the variances and covariance of coordinate and momentum

σqq(0) =
�δ

2mω
, σpp(0) =

�mω

2δ(1 − r2)
, σpq(0) =

�r

2
√

1 − r2
. (9)

Here, δ is the squeezing parameter which measures the spread in the initial Gaussian packet
and r, with |r| < 1, is the correlation coefˇcient at time t = 0. For δ = 1 and r = 0 the
correlated coherent state becomes a Glauber coherent state.

If the initial wave function is Gaussian, then the density matrix remains Gaussian for
all times [7]. We take the initial Gaussian wave function (8) as the pure state 1 with the
corresponding matrix A1 and the state at an arbitrary time t described by the density matrix
ρ(t) as the state 2 with the corresponding matrix A2. When the initial Gaussian wave
function (8) is not displaced, α1 = α2 = 0 and the exponential factor in expression (3) of the
quantum ˇdelity becomes 1. In this case we obtain (σ ≡ σqqσpp − σ2

pq)

F (t) =
�√

σ(0) + σ(t) + σqq(0)σpp(t) + σpp(0)σqq(t) − 2σpq(0)σpq(t)
. (10)

Introducing the expressions obtained in [5,6] for the variances of the coordinate and momen-
tum, expression (10) takes the following explicit form when the initial state is a squeezed
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state (r = 0) (Ω2 ≡ ω2 − μ2, ε ≡ �ω/2kT ):

F (t) = 2

{
e−4λt

[
1 −

(
δ +

1
δ

)
coth ε + coth2 ε

]
+

e−2λt

2Ω2

[(
ω2

(
2 + δ2 +

1
δ2

− 4 coth2 ε

)
+

+ 4μΩ
(

δ − 1
δ

)
sin(2Ωt) coth ε +

[
ω2

(
2 − δ2 − 1

δ2

)
− 4μ2(1 − coth2 ε)

]
cos(2Ωt)

)]
+

+ 1 +
(

δ +
1
δ

)
coth ε + coth2 ε

}−1/2

. (11)

The time evolution of the quantum ˇdelity (11) as a function of the temperature, dissipation
constant and squeezing parameter of the initial Gaussian state is represented in Figs. 1Ä3. In
the particular case of an initial coherent state (δ = 1) and for T = 0, the quantum ˇdelity is
constant, F (t) = 1. For large times we get the following expression of the asymptotic ˇdelity

Fig. 1. Dependence of quantum ˇdelity F (11) on time t and temperature T via C ≡ coth
�ω

2kT
, for

ω = 1, λ = 0.1, μ = 0, r = 0. a) δ = 1; b) δ = 2

Fig. 2. Dependence of quantum ˇdelity F (11) on time t and squeezing coefˇcient δ, for ω = 1,

λ = 0.1, r = 0. a) μ = 0, C = 1 (T = 0); b) μ = 0.08, C = 5/3
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Fig. 3. Dependence of quantum ˇdelity F (11) on time t and dissipation constant λ, for ω = 1, μ = 0,

r = 0, C = 3. a) δ = 1; b) δ = 2

when the initial state is a correlated squeezed state:

F (∞) =
2√

1 +
(

δ +
1

δ(1 − r2)

)
coth ε + coth2 ε

. (12)

It depends on the environment temperature and parameters of the initial state, but does
not depend on the dissipation constant. For a coherent state (δ = 1) we obtain F (∞) =

2
1 + coth ε

. When the temperature of the environment is T = 0, expression (12) becomes,

for r = 0, F (∞) =
2
√

δ

δ + 1
and F (∞) = 1, if the initial state is a coherent state. For δ �= 1,

we get always F (∞) < 1.
When the initial Gaussian wave function (8) is displaced, in the previous expressions of

the asymptotic ˇdelity the exponential factor exp (−E) of Eq. (3) is present, where E for
large times (t → ∞) and for a coherent state has the form

E(∞) =
m2ω2σ2

q(0) + σ2
p(0)

�mω(1 + coth ε)
. (13)

CONCLUSION

Using the expression of the ˇdelity for the most general Gaussian quantum states, we
have investigated the behaviour of the quantum ˇdelity for the states of a harmonic oscillator
interacting with an environment, in particular with a thermal bath. The time evolution of
the considered system was described in the framework of the theory of open systems based
on quantum dynamical semigroups. By taking a correlated squeezed Gaussian state as the
initial state, we calculated the quantum ˇdelity for both kinds of undisplaced and displaced
states. We have also described the behaviour of the time evolution of the quantum ˇdelity
in dependence on the squeezing and correlation parameters characterizing the initial Gaussian
state and on the dissipation constant and temperature characterizing the environment.
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