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SYMMETRY ENTANGLEMENT IN POLARIZATION
BIPHOTON OPTICS

V. P. Karassiov1

Lebedev Physical Institute of the Russian Academy of Sciences, Moscow

We study kinematic and dynamic ways of forming entangled states of quantum light ˇelds due
to their local and global polarization SU(2) symmetries. The kinematic entanglement is shown to be
associated with particular polarization bases in the spaces of quantum states of multimode radiation,
which are generated by the global SU(2) symmetry. Dynamic entanglement is due to SU(2) symmetries
of the Hamiltonians of the matterÄradiation interaction. We also deˇne some entanglement measures,
which are related to characteristics of light depolarization. Applications of results obtained in biphoton
optics are brie
y discussed.
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INTRODUCTION

The notion of entanglement introduced in quantum mechanics as early as 1935 [1, 2]
plays an important role in current investigations of both quantum theory foundations and
quantum information processing (see, e.g., [3Ä9] and references therein). Herewith, in the
most of these investigations the main attention was paid to quantifying entanglement that is
due to the quantum computing needs [6]. However, from the fundamental point of view,
it is also of importance to analyze qualitative aspects, such as ®sources¯ and mechanisms
of entanglement for different quantum systems [1, 2, 8]. Amongst them one can distinguish
symmetry considerations as ®sources¯ (cf. [7]) and ®pairing¯ (or ®clusterization¯ in more
general cases) of composite system components as mechanisms of entanglement. It is of
interest to examine both quantitative and qualitative aspects of entanglement in polarization
quantum optics which yielded elementary examples for setting the entanglement problem [2]
and many modern studies [6]. However, all examples to be examined up to recently involved
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entangled states with ˇnite and little photon numbers, while those for the macroscopical multi-
mode radiation were not investigated. This lacuna was in part removed in our paper [10]
where such states were constructed to describe unusual states of unpolarized light. Below we
develop ideas [10] in more general context incorporating cases of states with both little and
large photon numbers.

1. POLARIZATION OF QUANTUM LIGHT. THE P -QUASISPIN CONCEPT

At ˇrst, we brie
y describe basic notions of quantum polarization optics. The quantum
theory of light ˇelds is based on the expansion of the operators of the vector potential Â(r, t),
as well as the electric (Ê(r, t)) and the magnetic (H(r, t)), in plane monochromatic waves,
which specify the photon structure of radiation [11]. In the case of m spatiotemporal modes
kj this expansion has the form

Â(r, t) = c

m∑
j=1

√
2π�

V ωj

{
Â(+)(j) ei(kjr−ωjt) + Â(−)(j) e−i(kjr−ωjt)

}
,

Ê(r, t) = −1
c

∂Â
∂t

, Ĥ(r, t) = �× Â, (1)

Â(−)(j) =
∑
α=±

eα(j)â†
αj = (Â(+)(j))†, [âαi, â

†
βj ] = δijδαβ ,

where e± are the polarization orts; â†
αj/âαj are operators of creation/annihilation of photons

with the wave vector kj , frequency ωj = c|kj | and polarization α = ±, which are basic
quantities for describing quantum radiation [11,12].

In particular, the 2m-mode Hilbert space LF (2m) = Span{|{n+i, n−i}〉} of its quantum

states is given as the tensor product LF (2m) =
⊗m∏

i

Li
F (2) of the two-mode Fock spaces

Lj
F (2) = Span

{
|{n±j}〉 =

∏
α=±

[nαj !]−1/2(â†
αj)

nαj |0〉
}

, (2)

where |{n±i}〉 are eigenstates of the ˇeld operators of Hamiltonian Ĥf = �

m∑
i=1

ωi

∑
α=±

n̂αi and

momentum P̂f = �

m∑
i=1

ki

∑
α=±

n̂αi (n̂αi ≡ â†
αiâαi) as well as of the relativistically invariant

partial helicity operators Ŝ3kj = (Ŝ · kj)/|kj | = n̂+j − n̂−j , which specify the physical

sense of the polarization label α in (1). However, operators Ŝ3kj , being the only measurable
components of the radiation spin [11], do not provide a complete polarization characterization
of arbitrary states in LF (2m) because of the strong degeneracy of the Ŝ3kj eigenvectors [12].

This drawback is canceled within the framework of the P -quasispin concept, which was
proposed by the author in [10] and developed in [12,13]. It is based on using the polarization
gauge SU(2) symmetry of light ˇelds in the momentum representation described by means
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of the group

SU(2)ga
p =

⎧⎨
⎩exp

⎛
⎝−i

m∑
j=1

w(kj) · P̂kj

⎞
⎠

⎫⎬
⎭ =

m∏
j=1

SU(2)j
p,

(3)
[SU(2)ga

p , Ĥf ] = 0 = [SU(2)ga
p , P̂f ],

where the generators P̂i kj of the partial polarization SU(2)j
p group are components of the

partial P -quasispins P̂kj ≡ (P̂1 kj , P̂2 kj , P̂3 kj ) deˇned as follows [10]:

2P̂1 ≡ n̂x − n̂y = â†
+â− + â†

−â+, 2P̂2 ≡ n̂x′ − n̂y′ = i(â†
−â+ − â†

+â−),
(4)

2P̂3 ≡ n̂+ − n̂− = Ŝ3kj

(for the sake of simplicity subindices kj in P̂i kj are omitted). Herewith, operators â†
αj are

transformed as components of polarization spinors under the SU(2)ga
p group actions,

â†
αj → â†

αj(w) = Û(w)â†
αjÛ(w)† =

∑
β=±

U
1/2
αβ (w) â†

βj , Û(w) ∈ SU(2)ga
p , (5)

where U
1/2
αβ (w) are matrix elements of the spinor representation of the SU(2) group [12,14].

Hence, the group SU(2)ga
p equivalent to the SU(2) group of local transformations, which is

used in examining entanglement of qubit systems [6].
The introduction of the SU(2)ga

p group and the use of the appropriate P -quasispin for-
malism [14] allow one to describe polarization properties of arbitrary light ˇelds completely
because all polarization observables are expressed in terms of P -quasispins P̂kj and the

above degeneracy of the Ŝ3kj eigenvectors is removed. Moreover, the P -quasispin formal-
ism allows one to determine new types of entanglement in polarization optics. Herewith,
besides the SU(2)ga

p group and partial P -quasispins P̂kj , an important role belongs to the

global polarization group SU(2)gl
p = {exp(−iw · P̂)} and to the total ˇeld P -quasispin

P̂ ≡ (P̂1, P̂2, P̂3) =
m∑

j=1

P̂kj [10,12].

2. THE P -QUASISPIN FORMALISM AND
ENTANGLEMENT IN POLARIZATION OPTICS

The starting point of our analysis of the entanglement problem in polarization optics is
the introduction of two types of the polarization bases in the Hilbert spaces LF (2m) [12].

The ˇrst is deˇned as the tensor product
⊗m∏
j=1

|Pj ; μj〉 ≡ |{Pj ; μj}〉 of the ®partial¯

polarization bases in the spaces Lj
F (2) where |Pj ; μj〉 are eigenvectors of the commuting

operators P̂2
kj

≡ P̂ 2
1kj

+ P̂ 2
2kj

+ P̂ 2
3kj

≡ P̂j(P̂j + 1)(P̂j = 1
2 n̂j, n̂j ≡ n̂+j + n̂−j), P̂3kj :

P̂2
kj
|Pj ; μj〉 = Pj(Pj + 1)|Pj ; μj〉, P̂3kj |Pj ; μj ; 〉 = μj |Pj ; μj ; 〉,

(6)
2Pj = 0, 1, . . . ,∞, |μj | � Pj ,
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which are explicitly given via re-numbering the Fock states in Lj
F (2) : |Pj ; μj〉 = |n+j =

Pj + μj , n−j = Pj − μj〉. Evidently, the label 2Pj = n+j + n−j ≡ n̂j removes the

degeneracy of the Ŝ3kj eigenvalues 2μj , and the basis {|{Pj ; μj}〉} provides a complete
polarization analysis in LF (2m).

However, another (collective) polarization basis in LF (2m) is of more importance for
analyzing the polarization entanglement. By analogy with Eq. (6), it is deˇned as a set
{|P ; μ; λ〉} of eigenvectors of two commuting operators P̂2, P̂3 related to the global group
SU(2)gl

p . At the same time, there are essential distinctions with the previous case, namely:

1) P̂ �= n̂/2, n̂ =
m∑

j=1

n̂j , 0 � P � n/2, 2) total eigenvalues P, μ are strongly degenerate

and 3) the composite label λ, removing this degeneracy, includes the partial P -quasispins
Pj , j = 1, . . . , m, and a set σ of m−2 additional quantum numbers connected with the group
SO∗(2m), which acts complementarily to the SU(2)gl

p group on the space LF (2m) [10]. The
vectors |P ; μ; λ〉 can be expressed via linear combinations of the partial basis vectors |Pj ; μj〉 :
|P ; μ; λ〉 ≡

∑
μj

CP ;μ;λ
{Pj ;μj}|{Pj ; μj}〉 where CP ;μ;λ

{Pj ;μj} are products of the SU(2) ClebschÄGordan

coefˇcients and the set σ consists of intermediate (®cluster¯) P -quasispins [13].
However, an alternative form was proposed for the vectors |P ; μ; λ〉 in [10]:

|P ; μ; λ〉 =
∑

CP ;μ;λ({α±j ; βij ; γij})
∏
j

(a†
+j)

α+j (a†
−j)

α−j

∏
i�j

(Ŷ †
ij)

βij (X̂†
ij)

γij |0〉,
(7)∑

α±j = |μ| ± μ,
∑

βij = P − |μ|,
∑

γij = n/2 − P, n =
m∑

j=1

nj ,

where composed operators Ŷ †
ij = 1

2 [â†
+iâ

†
−j + â†

−iâ
†
+j ], X̂†

ij = 1
2 [â†

+iâ
†
−j − â†

−iâ
†
+j] satisfy

the equations [Ŷ †
ij , P̂3] = 0, [X̂†

ij , P̂a=1,2,3] = 0 and, hence, may be interpreted as ®creation
operators¯ of ®helicityless¯ and P -scalar biphotons, accordingly. The form (7) shows that
the basis {|P ; μ; λ〉} contains the subset of entangled states, which are speciˇed by coupling
partial spatiotemporal modes via the explicit occurrence of operators Ŷ †

ij , X̂
†
ij in |P ; μ; λ〉.

By way of example, we write down in the case of m = 2 the states |Φ0〉 =
∣∣∣P = 1; μ =

0; P1 =
1
2

= P2

〉
=

√
2 Ŷ †

12|0〉, |Ψ0〉 =
∣∣∣P = 0; μ = 0; P1 =

1
2

= P2

〉
=

√
2 X̂†

12|0〉 which

coincide with two ®diagonal¯ Bell states [6]. (Two other Bell states are |Φ±〉 =
1√
2

[∣∣∣P =

1; μ = 1; P1 =
1
2

= P2

〉
±

∣∣∣P = 1; μ = −1; P1 =
1
2

= P2

〉]
.) Evidently, the entanglement,

manifesting in Eq. (7), may be named kinematic because it is due to the SU(2)gl
p symmetry

and does not depend on any dynamics. It can be implemented dynamically in processes of
biphoton optics [15] with interaction Hamiltonians

Ĥbf = �

m∑
i,j=1

∑
α,β=±

[
gαβ

ij â†
αia

†
βj + gαβ∗

ij âαiâβj

]
, (8)

when the coupling constants gαβ
ij have symmetry properties: gαα

ij = 0, g+−
ij = ±g−+

ij =
g̃ij [13].
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The introduction of the basis {|P ; μ; λ〉} entails the decomposition

LF (2m) =
∞∑

2P=0

∑
λ

L(P ; λ), L(P ; λ) ≡
{
|ΨP,λ〉 =

∑
μ

CP,λ
μ |P ; μ; λ〉

}
(9)

of LF (2m) in SU(2)gl
p -invariant subspaces L(P ; λ) as it follows from the transformation law

|P ; μ; λ〉
SU(2)gl

p−→ |P ; μ; λ〉(w) ≡ Û(w) |P ; μ; λ〉 =
P∑

μ′=−P

UP
μ,μ′(w)|P ; μ′; λ〉 (10)

of the vectors |P ; μ; λ〉 with respect to the SU(2)gl
p group [12]. Equation (10) provides

possibilities to ˇnd new entangled states (dynamically) by means of SU(2)gl
p transformations

of certain initial ones. For example, transforming in such a way the Bell state |Φ0〉, one can
get two other Bell states |Φ±〉 : |Φ+〉 = Û(w+ = (0, π/2, 0)) |Φ0〉, |Φ−〉 = −iÛ(w− =
(π/2, 0, 0)) |Φ0〉. Note that the transformations (10) maintain the total P -quasispin value and
the number n/2 − P of ®biphoton clusters¯ X̂†

ij , whereas it is not the case for the local
SU(2)ga

p group transformations:

|P ; μ; λ〉
SU(2)ga

p−→ |P ; μ; λ〉({wj}) =
∑

{P ′,μ′;μj ,μ′
j}

CP ′;μ′;λ
{P ′

j ;μ′
j}

CP ;μ;λ
{Pj ;μj}

∏
j

U
Pj

μj ,μ′
j
(wj)|P ′; μ′; λ〉.

(11)
And now we brie
y discuss the physical nature of kinematic polarization entanglement

and its ®measures¯. First, we note that the decomposition (9) contains the subspace LX(0) =∑
λ

L(P = 0; λ) generated by the biphotons X̂†
ij only, and its states |ΨX〉 satisfy equations

〈ΨX |P̂i kj |ΨX〉 = 0, i = 1, 2, 3; 〈ΨX |P̂ a1
1 P̂ a2

2 P̂ a3
3 |ΨX〉 = 0, a1 + a2 + a3 � 1, (12)

demonstrating all features of unpolarized light (the ˇrst equality) and the full absence of
the polarization noises of the total P -quasispin components (that is an indicator of the total
polarization squeezing of light). However, the mechanism of light depolarization is here due to
strong phase correlations between photons (phase matching), unlike the randomization of light
waves for unpolarized light in classical optics [13]. An example of microscopic realization
of states |ΨX〉 is the Bell singlet |Ψ0〉, and their macroscopic implementation is given by the

generalized coherent states |ΨX(zij)〉 = exp
[∑

ij

(zijX̂
†
ij−z∗ijX̂ij)

]
|0〉 of the SO∗(2m) group

which determine the unique class of unpolarized quantum light (P -scalar light) [10]. The
second example of such unusual (coherent!) mechanisms of light depolarization is yielded by

the subspace LY (0) =
{
|ΨY 〉 =

∑
P,λ

CP,λ
μ |P =

n

2
; μ = 0; λ〉

}
generated by the biphotons Ŷ †

ij

only and determining a class of ®helicityless¯ unpolarized quantum light because its states

|ΨY 〉 satisfy the ˇrst equality in Eqs. (12) and the equation 〈ΨY |P̂ a(�1)
3 |ΨY 〉 = 0 [10]. By

analogy with states |ΨX〉, a microscopic and some macroscopic realizations of states |ΨY 〉 are

given the Bell state |Φ0〉 and states |ΨY (zij)〉 = exp
[∑

ij

(zij Ŷ
†
ij − z∗ij Ŷij)

]
|0〉, respectively.
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So, we showed that new (coherent!) mechanisms of light depolarization describe also
the origin of kinematic entanglement in polarization optics. Therefore, we conjecture that
as ®measures¯ of latter it is worthwhile to use SU(2)p-invariant characteristics of light
depolarization 1 − P and 1 − Pj where total (P) and partial (Pj) degrees of polarization are
deˇned as follows [13]:

P = 2

√
〈P̂〉2

〈n̂〉 , Pj = 2

√
〈P̂kj 〉2
〈n̂j〉

, j = 1, 2, . . . , m. (13)

A good premise for that is the relation C2 = 1 − 1
2
[P2

1 + P2
2 ] between Wooter's concur-

rence C [4] and partial degrees of polarization Pi of two spatiotemporal modes which was
obtained in [16]. Besides, one can try to use for this aim other SU(2)p-invariant quantities.

Amongst them one can distinguish the ®content¯ CX = 1 − 2P̄

〈n̂〉 , 2P̄ = −1 +
√

1 + 4〈P̂〉2

of X†
ij biphotons in the state under study [10] as well as its partial and ®cluster¯ analogs.

CONCLUSION

So, we have discussed the notion of entanglement in polarization quantum optics as well
as kinematic and dynamic ways of forming entangled states due to local and global polariza-
tion SU(2) symmetries. Speciˇcally, the kinematic entanglement is related to the synergetic
role of the global SU(2) symmetry, while the dynamic one is due to SU(2) transformations
properties of the Hamiltonians of the matterÄradiation interaction. We also established re-
lationships between polarization entanglement and unusual (coherent!) mechanisms of light
depolarization and proposed appropriate polarization entanglement measures which can be
used for a classiˇcation of entangled states.

In conclusion we mention some possible directions of developing the above results. The
ˇrst one is in examining relations between the above polarization entanglement measures and
those which were proposed in literature for qubit systems using other considerations [4Ä9].
The second, applied direction is in the use of results obtained to analyze entangled states
produced in spontaneous parametric scattering in multiply domained crystals (cf. [16]) and to
generate macroscopic entangled states like |ΨX(zij)〉 and |ΨY (zij)〉.
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